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Solitary Rayleigh waves in the presence of surface nonlinearities
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The propagation of Rayleigh waves is investigated in a solid substrate of linear material covered by a film
consisting of a material with large nonlinear elastic moduli. For this system, a nonlinear evolution equation is
derived that may be regarded as a special case in a wider class of evolution equations with a specific type of
nonlocal nonlinearity. Periodic pulse train solutions are computed. For a certain member of the class of
nonlinear evolution equations, several families of solitary wave solutions and their associated periodic station-
ary wave solutions are derived analytically.
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INTRODUCTION In these earlier investigations, the dominant nonlinearity
has been that of the substrate. As the film thickness has
Recently, renewed interegiboth experimental and theo- mostly been small in comparison to the characteristic wave-
retica) has developed in nonlinear surface acoustic wavedength of the surface acoustic waves, the film constitutes
This is partly due to new experiments on the propagation obnly a small fraction of the volume, where the strain is high.
high-intensity surface acoustic pulsgs—3] and on wave This is no longer the case when the film is not tightly bound
form evolution of initially sinusoidal Rayleigh wavé4] and  to the substrat¢26]. When allowing for slippage at the in-
partly due to interesting and sometimes controversially disterface between film and substrate, the weakly dispersive
cussed topics in the theory of nonlinear surface acoustiquasilongitudinal mode of the film is weakly coupled to the
waves as the existence of stationary waves in the absence sifibstrate. Its strain field is mainly localized in the film, and
linear dispersio5—8] and shock formation or wave break- the Benjamin-Ono equation was found to be the evolution
ing of nondispersive nonlinear Rayleigh way8s-14]. From  equation for weakly nonlinear waves of this kifj@6].
a mathematical point of view, the nonlocality of the nonlin- Porubov and Samsonov have also investigated the general
earity arising in the theoretical description of nonlinear Ray-case of a nonlinear film covering a nonlinear substfa6s.
leigh waveq 8,13,15—-18is an interesting phenomenon and They have derived an evolution equation which they have

its consequences are yet little explored. subsequently reduced to the nonlinear Sdhwger equation
It is well known that in the case of an isotropic elastic halfto derive approximate stationary periodic solutions.
space there exist two main types of surface wayEsRay- In the following, we focus on a situation where the film is

leigh waves, having sagittal polarization with two nonzerotightly bound to the substrate, but where the effects of the
components of the displacement fiétdro-component fielg nonlinearity of the film are still much larger than those of the
which are coupled due to the boundary conditions at thesubstrate nonlinearity such that the latter may be neglected.
surface, and2) Love waves, having shear-horizontal polar- This situation may occur when certain nonlinear elastic
ization (one-component fie)d The latter only exist in the moduli of the film have much larger values than those of the
presence of a film of different material covering the substratesubstrate. The motivation for this study is twofold. On the
[19,20. The density of energy in surface waves can be verypne hand, this system leads to interesting new nonlinear evo-
large due to its localization in a narrow domain near thelution equations that deserve to be studied from a mathemati-
surface and so nonlinear effects can be expected to be sigal point of view. On the other hand, this system, consisting
nificant for such types of waves. Nonlinear effects in connecof a nonlinear film on a linear substrate, is in some respects
tion with surface acoustic waves have been investigated isimpler than the systems with the nonlinearity of the sub-
the past to a large extent, in the case of shear-horizontaitrate being the dominant one. Because of the linearity of the
waves mostly on the theoretical side focussing on envelopsubstrate, the displacement field in the substrate may be for-
solitons[21] (for references to earlier work see RE22)). mally eliminated. In this way, results may be tested that are
Recently, a number of experimental studies have been caobtained by applying standard asymptotic methods to the full
ried out on nonlinear wave form evolution of Rayleigh equations of motion and corresponding boundary conditions
waves in the presence of linear dispers|[@3-25,4,2. In  for weakly dispersive surface waves. Solitary surface acous-
some of these experimenf23,2], linear dispersion of the tic waves are essentially two-dimensional objects since their
Rayleigh waves was generated by covering the substra@ssociated displacement field depends on a coordinate paral-
with a film made of a different material. lel to the surface as well as on a depth coordinate. Once the
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ol whereh is the thickness of the coating film, the waves propa-
Film h y gate along thex direction, and the axis is directed normal to
the surface into the volume.

X The equation of motion for the bulk material in the iso-
Substrate . tropic case has the form
(92
— 2 2 2 :
—u=C;Au+(C{—C;)grad divu, (1.1
FIG. 1. Geometry. at

displacement field is known at the surface, it can be Com\_/vhereu Is the displacement vectdt, andC, represent the
P o . . - velocities of transverse and longitudinal bulk waves. The
puted at any point in the linear substrate simply by usin

Green’s functions. The analogous problem in the case of a ass density will be calleg. For simplicity, we shall as-

; . Fpume that the material of the coating differs from the sub-
nonlinear substrate would be much more complicate v in its densi h . ¢
(27,28, strate only in its densitype. (For the existence of Love

The paper is organized in the following way. In the fol- waves it is necessary to have a “heavy” covering film with

lowing section we briefly review the theory of linear surfacepFip') ing that onl ittal nts and f th
acoustic waves propagating in an isotropic substrate coateéis ISz:cueTr:th fiael dogyesﬁghfergorggzngbtﬁa frllr; ;Zeofollc?win
by a thin film. The presence of the film is accounted for by ﬁp tive bound dit tt,h £4@9.301 9
effective boundary condition®9,30. In Sec. Il, the deriva- effective boundary condition at the surfg@d,30:

tion of these effective boundary conditions is extended to au au

include the second-order nonlinearity of the film and higher- pC|2(—Z + (1_2Ct2/C|2)_X) =h(pe—p)
order linear dispersion. With the help of these nonlinear 9z X

boundary conditions at the surface of the substrate and a

traveling-wave ansatz for the sagittal components of the dis- o[ Uy AU,
placement field, the system of equations of motion and P t(E X
boundary conditions for the displacement field is reduced to

a single integrodifferential eguation fo_r one scalar yariable NN the case of purly shear-horizontal waves we have only one
Sec. ll. In Sec. IV, an evol'utlon gqugtlon for Rayl'elgh WaveScondition, namely, Eq(1.3), with the displacement compo-

in the system under consideration is derived using a projeGienty replaced by

. . N X y:

tion method in very much the same way as for Rayleigh ¢ is' convenient to represent the displacement veatas

waves in nonlinear substratgs,31]. This procedure is gen- the sumu=ut+u' of transversai' and longitudinall' parts,

eralized to account fo_r anisotropy of b‘?th the film and the,, i, satisfy two-dimensional wave equations. In the case of
substrate material. Using this method, it is then shown th

th luti tion holds f A ith i a'Etationary wavesi=u(x—Vt,z), propagating in the direc-
€ same evolution equation holds for Systems with CONUNUg,, with the constant velocity, the functionsu! and u'

_ously varying elastic moduli with certain ela_st|c moduli be- satisfy the two-dimensional Laplace equation. So for all the
ing very large near the surface. With a traveling wave ansat omponenta of vectorsut and u' we have the following

this eyolut|or_1 equ_at|on IS re_duced to the IntegrOdIfferem'alconnection between their derivatives at the boundary plane
equation derived in Sec. lll in a more direct approach. _

At the end of Sec. IV, the physical system is further gen-
eralized to allow for additional nonlinear terms in the effec- Ju _ou
tive boundary conditions of Sec. Il, that are not generated by 2zl = \/1—V2/C2H5 , (1.9
the elastic nonlinearity of a covering film. For generalized s s
systems of this kind, a class of evolution equations with non- . N B
local nonlinearity results. The equation governing propaga\-NhereC_C' for longitudinal componenltiz—ct for trans-
tion of nonlinear Rayleigh waves in a linear substrate covVerse components, artd denotes the Hilbert transform op-
ered by a nonlinear filniSec. IV A) represents a special case erator.(The main properties of the H|_Ibert t'ransform _needed
in this class. for our purposes are listed in Appendix)AJsing the evident

In Sec. V, the evolution equations derived in the previousconnection between the componentsubaind u': guy/dx=
sections are analyzed. Numerical solutions are presented forduy/dz and Julaz=guy/gx, we can express all compo-
the special case of Sec. IV A corresponding to periodic stanents of deformation on the surface in terms of two of them,
tionary nonlinear Rayleigh waves. For other special casedpr example,v =dul/dx andw=dul/dx (see Appendix B
analytic solitary wave and stationary periodic wave solutionsAfter substitution of these relations into formul@s?),(1.3)
are derived, and their depth profiles are discussed. The papee can rewrite them in the simple form,
ends with a short conclusion.

2
éu,
at?

, (1.2

J%uy
=h(pr—p) 2 z=0. (1.3

~ 0d
{(Z—VZ/CE)+d(V/Ct)2KtH—}W
I. LINEAR SURFACE WAVES IN LAYERED STRUCTURES IX

At first let us briefly discuss the linear case. The geometry

; ] e +
of the system under consideration is sketched in Fig. 1,

N J
2k H —d(V/Ct)Za v=0,
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2/~2 2 0f Ci &
(2—V7eICy)+d(VICy) K|H(9—XU / KB o
//, e ’ F
p Gy @ ~ [1-(vic)]?
—| 2k H— d(V/Ct)Z(?_X}W: 0, (1.5 /,/ /,/ Love wave / & ~ (i)

// /// ,/’// Cr ]

where  d=h(pe—p)/p, Ke=1-— Vz/Ct ) and  « ,///"///Rayleigh wave %(@/@
2 . B Zé
=4\1-V /C2|. In our long-wave approximatiodd/gx~ dk 0 k 0 c o o oV
. . . . . r 1 t 1
is small and in the leading order in this small parameter, the
connection between the functiomsand w readily follows (a) (b)
from Eq.(1.5), -
FIG. 2. Linear dispersion relationsi= w(k) (a), o(V)=w(k)
. 1 V4 9 —-kV (b)
Z—ﬁ 2K|H_Ed_4_ v, (1.6)
(2—=V7ICY) Cy X The dispersion relationgl.8) and (1.10 are sketched in
) ) ) ) Fig. 2@ as a functionrw= w(k). Since the frequency and
and the equation for the dispersion relation, wave numbek are not convenient characteristics for a soli-
3 tary wave, let us rewrite the dispersion law in terms of group
[(2=V?IC?)%— 4K k] —d(VIC)*(k + k) H—|v =0, velocity V= dw/dk and the frequency in the frame of refer-
X ence moving with this velocityo(k) = w(k) —kV. The dis-

(1.9 persion laws(1.8) and (1.10 are shown in Fig. () as the

which coincides with the corresponding result in RéB] to dependence = (V).
first order ind. The hatched domains in Fig(l8 show the areas where
The first term in Eq(1.7) gives the velocityC, of disper-  dynamical envelope solitons can exist, and the solid line seg-
sionless Rayleigh waves in a half space without the coveringnents correspond to the one-parametrical solitary waves of
film. The presence of this film gives rise to an effective dis-stationary profile. But the velocities in segmekare larger
persion of Rayleigh waves, and it follows from E4.7) that  thanC, and therefore, the corresponding solitary waves must
be unstable with respect to Cherenkov radiation of transverse
w=Cg(k—dkk[B), (1.8 bulk waves. Surface solitons can exist only in segni2Bt
The B end of this segment corresponds to the area of large
wave numbers in Fig.(3a) and %Fo) soli'gf;l)ry waves with veloci-
2 2O 1f2 22— 1/2 ties V smaller, but close taC;™’ (C;™ is the velocity of
B= & (1-CR/C) T+ (A-CRICH . transverse waves in the material of the filmust be associ-
ACY (C2—C3) '+ (CE—C3)t-4(Cct-cd)t ated with large field gradients and continuum theory may no
(1.9 longer be appropriate. The solitary waves with velociles
) _ ) ) ) larger, but close t&, in the D end of the segmerdB can
Comparison of this expression with the corresponding eXayist and represent Rayleigh-type surface solitary waves

where

pression for shear wav¢s0], which are the main object of investigation in this paper.
1
wzct( ke _d2k3), (110 !l NONLINEAR EFFECTIVE BOUNDARY CONDITIONS
2 AT THE SUBSTRATE SURFACE

shows that the dispersion of Rayleigh waves in the long- If the thickness of the film is much smaller than the char-
wavelength limit is larger than the dispersion of Love wavesacteristic wavelengths of the nonlinear surface waves under
The existence of solitons and their structure in nonlineaconsideration, one may expect that the displacement field of
evolution systems depends on the competition of nonlinearthe nonlinear wave varies little over the distance between the
ity and dispersion, and the properties of one-parametric dyinterface az=0 and the surface at=—h. In this situation,
namical solitons with a stationary profile strongly depend orone may apply the method introduced in R€29,3Q to
the value of the dispersioD = *w/dk? of linear waves in  eliminate the displacement field inside the thin film in favor
the limit k—0 [32]. In the case of Rayleigh waves the dis- of an effective boundary condition at the surface for the dis-
persion in this limit is nonzeroD = —2C,Bd in contrast to  placement field in the substrate. Here, we generalize this
Love waves and waves in many nonlinear evolution equamethod to account for the elastic nonlinearity of the film.
tions of acoustical typéKdV, MKdV, Boussinesq equation, In this section, quantities refering to the film bear a super-
and others with zero dispersion at the poikt=0. Conse- script(F) or subscripf while those referring to the substrate
quently, solitary surface acoustic waves of Rayleigh type arare marked by a superscri® or subscriptS. Expanding the
expected to differ qualitatively from the soliton solutions of stress tensor at the surface in powers of the film thickness,
the above equations, but may bear similarities with those ofve may write
the Benjamin-Ono equation that has the same linear disper-
sion. 0=TH(x,0~hT{)(x,0+O(h?) (2.

az,z

036615-3



A. S. KOVALEV, A. P. MAYER, C. ECKL, AND G. A. MAUGIN

and consequently

TS (x,0=hT),(x,0+0(h?), (2.2
wherea=Xx,z. In addition, we shall use the equation of mo-
tion for the displacement field in the film,

T

24%,2)= pFugF)_TEyi),x(X:Z)-

While the displacement field and its derivatives with respec
to x andt are continuous at the interface, this is usually not
the case for itz derivatives. Therefore, we may replace the
time andx derivatives ofu(F) on the right-hand side of Eq.
(2.2) by the corresponding derivatives of®, but not thez
derivatives. The latter occur in E€R.2) only as first deriva-
tives and may be expressed in terms of derivatives with re
spect tox in the following way using the boundary condition
at the interface in the form

Clfat (0 = TR0 = CELUX.0)
1
= 5 Sl XX OUl(x,0)
= Szl A X, O UT(X,0)
1 (F) (F) (F
_ ESQZMZVZUM'Z(X,O)uV’Z(x,O). (2.9
Here,C{[},, are the second-order elastic moduli of the film,
while S§),,.. are the following linear combinations of

second-order and third-order elastic modai8]:

(F) (F)
Sup aBuvit

(F)
aBré:

(2.9
The first term on the right-hand side of E.4) can be
neglected as it is of first order in. Equation(2.4) may be
solved for the quantitiea([)(x,0) by iteration to second or-
der in thex derivatives of the displacement field. These so-
lutions may be inserted into the right-hand side of E42),
and theu([)(x,0) may be replaced by{’(x,0). Confining
ourselves to terms of first order mand second order in the
displacement gradients, we obtain the following effective
boundary condition:

_ () ()
uvze=C + 0auChozet 0aiCpiun™ 61C

T (x,00=h{peu(x,0— S, uS,(x,0
— S U, 0U (x,0}+0(h?) +O(u®).

(2.6

The definitions of the coupling coefficients occurring on the
right-hand side of Eq(2.6) are given below,

F F F
g(ax),ux = CEXX)/J,X_ CE)zx)ﬁz

c

YZuX

Tp, 2.7

F _ o(F 1 1 1 2 2
§(ax),uXVX_ SEXX),U,XVX_ 251,(211_ EELC)YV_ EE},(BQ—’_ E&z,u),v—'— E,Ew)w
2 F F F F
+ Egz,u?a_ SE%Z))\zng,ByC(yz)axF)\oCETZLXF {§C(§Z1)zx )
(2.8
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where
1 F F
E(a,u),u: Sny),uxng{gC(gz?/x’ (2-9)
2) _«F F F
E(a/ZV_ S(aX)BZﬂFBVCEyZLxF §§C(§zr)/x (2.10

and () is the inverse of the 83 matrix (C{);,).

The derivation of effective boundary conditions outlined
bove may be carried to higher orders in the film thickress
n a straightforward way. The linear term of second order in
h on the right-hand side of E¢2.6) is given by

1 .
F F F F
- E hz{[ch)p,zrw_ Faﬁc(ﬁz)vx]pFuv,X_’_ [ngx),uxruvcgzz)yx
- F F F F F F
+ CEIX),MZF//.VCS/X)yX_ ngx),uzr p.,B( C,(Bz)vx+ C(ﬁx)uz)r v&CESz)yx
—2C 2 S ot (2.1

In the following, we shall suppress the supersc(tat the
displacement field. The boundary conditio(&s6) may be
applied to any anisotropic nonpiezoelectric media. If the film
material is isotropic, they greatly simplify and become

2
)\F+2,LL|:_

T§§><x.0)=h<pFux(x.0)— Uy xx(X,0)

_F
)\F+2MF

1

2
x| 1 e | 3(2C£+2Bg+\
Nt 2pr (2Cg FtAg)
A A J
X /1— x —u
)\F+2,LL|:\ )\F+2,LL|: X XX
i PYS W) P A
2 ( F /'LF) )\F+2,U«|: ﬂXuZ’X
1 2/14: -
_p 7
2h )\F+2MFPFUZ,X+ Np+2ur
NE

(2.12

- m uz,xxx] )

Tg)(x,O) = h[ PrUL(X,0) = 2(Ng+ )

Fo\a
|1 —— | =
! )\F+2MF>&X[UZ'X(X'O)Ux,x(XvO)]}
1 —2ur -
“h2
+ 2h )\F+2MFPFUX’X+ )\F+21u’F
B & u (2.13
Ne+2uE X, XXX * .

Here,\ and u are the(linear) Lame constants, and\,B,C
are third-order elastic moduli of an isotropic elastic medium
defined in Ref[35].
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When applying these boundary conditions, one has to
keep in mind that the nonlinear terms on the right-hand side
of Eq. (2.6) are more important than the corresponding non-

2K| ~

W= 5wy

linear terms in Q'Efg) if at least one of the nonlinear elastic h [pFVZ— yo[ 2K Ky d
moduliAg, Bg, or Cg is much larger than the corresponding - 2—(V/Ct)2[ pCtz [1_ 2—(VIC,)? Ix
value of the substrate material. This means that one normally
has to keep only the first nonlinear term on the right-hand V1 2kiky |20 5 Y2
side of Eq.(2.12 and may neglect the nonlinear term in Eq. B 2pC? 1- 2—(VIC,)?| ox _TCIZ
(2.13. ,
Xkl —— i(H )2t +0(h?). (3.6
lIl. NONLINEAR TRAVELING WAVE ANSATZ A 2—(VIC)?| ox v ' '

In Eg. (1.2 we now replace the right-hand side by the
right-hand sides of Eq€2.12 and (2.13. When searching
for nonlinear wave solutions with stationary profile of the
form u=u(x—Vt,z) we can use the connection between the

Inserting this into Eq(3.2) leads to the following integro-
differential equation for the variabke:

components of deformation at the surfa@y) and rewrite
the two boundary conditions in the form

PE—

{D(V)— hVIC)22E— P+ Kt)ﬂg]v

2 K
B 2 pEVi—vy 0 =—h— [ 2—(VIC)?— 2k K ]?
{2 (V/Ct) hTKtH& W [2 (V/C )2] [ ( t) | t]
J
PV =7y d +£KK VIC 4]H—vz. 3.
2K|H+hTQ—aX} w (VICy X @7
1 (y, o X Here, D(V) =4k x;—[(V/C))?—2]? is the Rayleigh deter-
= 2h pC2 ix —[v— Kk HW] minant, which is a small quantity, as the relative deviation
e=(V—C,)/C, from the velocity of linear Rayleigh waves
Yo C, is small,
02 [K|Hv +w]? (3.2
D(V)=—ve=—¢g4 —'0 & K—?+ 2-2(>0
¢ . PFV ( ) ve= € g 0 C 0 g ’
2kl =| H+th—= — Ky I/ K
C pC{ 9 (3.8
2 2 2
N X) _2(5) h%,q,qi}v where ¢=Cgr/C,, «0=VI—&, «0=1—&CHC?2.
C C pCi 2 In the derivation of Eq(3.7) we have confined ourselves to
terms up to first order in the film thickneksn the effective
—h—z [K|HU+W][U—KtHW] (3.2  boundary conditiong2.12,(2.13. If the h* terms linear in
pCi the displacement field are taken into account, the term
where we have introduced the coefficients 52
h’K— (3.9
A2 (9X
=)\+2,u—)\+2 , (3.3
m has to be added to the right-hand side of B37). For sim-

Y 3

plicity, we have assumed in the derivation of E§.7) that
the linear Lameconstants of film and substrate are identical.
If in addition to the mass densities, the Lagenstants of the
film differ from those of the substrate, an intregrodifferential

_ _ equation for will be obtained that has the same form as Eqg.
3(2Be+2Ce+ M) AN+2u ! AN+2uf 39 (3.7 with partly different coefficients. In this more general
case, the coefficient in front of the term lineardnand of
first order inh may vanish. More precisely, this happens
=2(N+ ) 1—)\_‘_2“ (3.5 when[34]

For simplicity, we assume heme-=\g, ur=pug and sup-
press the indice§ andS at the linear Lamesonstants. The
first of the two equation$3.1) and(3.2) can be solved fow
up to first order in the film thickneds

(3.10

prlps=celcs,

wherec=\+2u—\?/(\+2u). In this case, the coefficient
K has the form
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ce[ cs 2up A solution of these equations may be constructed as a super-
)C_s — T 5 position of Rayleigh waves with amplitudes that are allowed

1
K=582-¢& Nt 2
Hs  ARTEME to depend on a “slow” time variable= & %:

—[4—2<ct/c|>2<§2+2>]§—z

, (3.1 .
U= 90 Cw(z|g)Aq( 7). (4.4
q
where agairt=C, /C, andC,, C;, andC, are the velocities

can be positive or negative. . _ the depth profile of a linear Rayleigh wave with wave num-
After rescaling of the coordinate and field variablev,  per g, It is a superposition of up to three exponentials in
Eq. (3.7) assumes the form nonpiezoelectric media. In the case of an isotropic substrate

- . ~ N andqg>0, it has the familiar form
U-pHU,—B.U,,—azH(UU,)=0, (3.12

with dimensionless coefficient8;, B,, and a3, and nox 1

—Vt andU being dimensionless, too. Already at this stage, w(zlg)=| 0 |exp(—qx(Vz)
we may note that Eq(3.12 has the unusual feature of a iKl(O)

nonlocal linear dispersion termnd a nonlocal nonlinearity.

The lowest-order linear dispersion term is obviously that of 1

the Benjamin-Ono equation, which reduces to +K, 0 exp(—qxﬁo)z), (4.5

U-A0,-02=0, (3.13 i/

with a traveling wave ansatz. This may be compared with th&yith the coefficient
KdV case,

~ o~ ~ Ki=— \/K(OjK(Oj. (4.6
2_ t |
u-u,,-Us=0, (3.149

3/ . . . -
where both the dispersion term and the nonlinearity are Iocaﬁ‘]teosrﬂﬁrsgéfe ?). we obtain from the equation of motion in

IV. DERIVATION OF AN EVOLUTION EQUATION .
@(x zt)—CS 4@ t
. . . . psUy (X!Z! ) a,BMVu;L,BV(XizY )
A. Boundary conditions corresponding to a nonlinear film
. - . . ] J o

A convenient way of deriving evolution equations for => 2iC,QpaW,(2]q) ——Aq(7)€I G, (4.7)
nonlinear guided acoustic waves is the projection method q aT
[31]. Anisotropy may be accounted for with virtually no ad-
ditional complication, and the application of the method to aand from the boundary conditior{2.6)

linear substrate with nonlinear effective boundary conditions

at the surface is particularly easy. . c),u? (x,01)
We start with an asymptotic expansion of the diplacement
field

- h{pFCr25aM_§(aE<),44x}% QZWM(O| q)Aq( 7)eld(x=Ct)
u(x,z,t)=eu®(x,z,t)+¥u@(x,z,t)+ O(&?),

4.9 o, ,
~(h2)S),x 2 09’ (A+q’)
with a dimensionless expansion parametetl. We also q.9’
. . _ 1/ . .
g(\;)oke ihg scalingh=0(&?) for the film thllckness an.d XW,,(0]q)W,,(0]q")Ag(7)Aq/ (7). (4.8
axuxox— O(1/e) for (at least some ¢fthe nonlinear coeffi-

cients of the film material. This particular scaling has beenye now multiply Eq.(4.7) by w*(z|k)exq —ik(x—C,1)],
chosen to make sure that the effects of the film are largegym overa, integrate over the areax<L, 0<z<, ap-
(and hence appear at lower ordersgfthan the nonlinearity  ply Green's second integral theorem and make use of the

of the substrate. _ . boundary conditions(4.3),(4.8). With the transformation
The first-order fieldu™) has to satisfy the equations of Aq(7)=Bq(7)/(iq), we finally obtain

motion

. J ~ —
psuP(x,z,t)=C), ulby (x,z,0) (4.2 IN——By=—K*BiBi+ K2 as(—k,a.k=0)BeByg.
q
subject to the boundary conditions 4.9
Cgsz)wuitl,)y(X,OI)Zo- (4.3 The coefficients in Eq(4.9) have the explicit form
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N=2Crp5kf |w(z|k)|? dz, (4.10
0

which is independent df for an appropriate normalization of

w;

B1=h[ peC2wW?% (0[k)w,(0[k) — SIF)

X X

W (0[k)w,,(0]K)]
(4.11

is also independent &€ The quantities

ag(—k,0,k=a) =hS{),,, w3 (0]k)w,(0lq)w,(0lk—q)
(4.12
depend only on the signs of the wave numblers, andk
—q, and they may be complex. Defining the coefficient

=az(—k,q.k—q) for k>0, 0<q<k, we may write fork
>0,

% as(—k,q,k—)BeBy_q

:Zfa 2

ByBy_,+2ak >, BB,
0<g<k a-k-g 3q>k a=a-k

(4.13

where we have made use of the reality of the displacement

field viaB_,=Bj . It is then evident that the coefficient
can be made real by the simple transformati@y
— By expi¢) with an appropriate phase angfe Defining
now the scalar fieldJ (&, 7) via

U(&7)=2, By(7)€e%, (4.14
q

where ¢é=x—C,t, the evolution equation(4.9 can be
brought into the real-space form

We emphasize that this evolution equation applies to sub-
strate and film materials of arbitrary anisotropy. Making now

a traveling wave ansatd(&,7)=U(&—v 7) with the veloc-

ity shift V—C,=¢%, we are led to the integrodifferential

equation(3.12, whenn=¢&—vr.

If the coefficientB; vanishes, a modification of the deri-
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1
uC2(x,z,t)=AK >, ea-Cihgl 0
L /10
X exp —qr{Vz)Ay(7), (4.17
with the coefficient
h[peC?—ce] k(V[1—(x{*)?]
= r t t (4.18)

2 1+ (x(9)2

At orderO(£%?) the terms proportional th? of the effective
boundary conditions come into play as well as the fialftl

in connection with the terms proportional lan the bound-

ary conditions. One may proceed in the same way as in the
above application of the projection method to arrive at the
evolution equation

U+ BoU e+ asH(UU,) =0, (4.19
which has the same linear dispersion as the KdV equation,
but it still has a nonlocal nonlinearity.

B. Continuously varying material properties

In the derivation of the evolution equatiori4.15 and
(4.19 we have so far considered a thin nonlinear film which
has a sharp interface with a homogeneous substrate. The
presence of the film has been accounted for by the effective
boundary condition(2.6),(2.11). We now show that these
equations also govern nonlinear surface wave propagation in
a medium with continuously varying material properties near
the surface and a large second-order nonlinearity in the
neighborhood of the surface.

The system is described by the Lagrangian

3 1 .. 1
L= | d°x 5PUUa~ Esaﬁwuaﬁuﬂyy

- gsaﬁwguaﬁuwug,g). (4.20

The mass density and coupling coefficientss,z,, and
Sepuvce @re now allowed to be functions af These func-

vation has to be applied to include higher-order dispersion ifions are assumed to be differentiable or0. Atz=0, they

the evolution equation. We now apply the scaliig
20(81/4) andg(af()/.txvx
expanded as

u(x,z,t)=eu®(x,z1)+ @ (x,z,t) + e¥UC)(x,z,1)
+0(&?). (4.16

It is an easy task to determine the fiel?) explicitly. The

boundary conditions at ord€@(s>% merely lead to a modi-
fication of the coefficients in front of the exponentials that

constitutew(z|q). In the isotropic case, we may write

=0(1/e%%. The displacement field is

have a discontinuity and they vanish o« 0.

From Hamilton’s principle, the following equations of
motion in the medium and boundary conditions at the surface
are derived:

. 14
p(Z)Ua(X,Z) = a_)%saﬁ,uv(z)uy,,v(xiz)

J
_Bsaﬁ,uvgf(z)u,u,v(xaZ)ug,f(xrz) = 0:

T2
(4.21)
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1
SaZ/.LV(O)u,U,,V(X10) + ESaz,wgg(o)U,L,V(Xao)ug,g()(,o) =0.
(4.22

Introducing again a dimensionless expansion parameter
<1, we assume that the coefficients in the above equations

may be decomposed in the following way:

p(2)=po+e'%pi(2), (4.23
Supur(2)=Capupte26S,p,.,(2), (4.24
Saﬁ,uvgf(z):gaﬁuvgg+871/258043;“@5(2)- (425)

With this choice of scaling, the linear dispersion and the

nonlinear terms associated witi§,,,,.:(z) will be of the
same order ok, while the “background” nonlinearity with

coefficientsgaﬁw,gg will appear at higher orders af.

In an asymptotic expansiofd.1l) of the displacement
field, the first-order fieldu®) has to satisfy the equations of

motion
pol{(x,2,)=C g, U, (X, 2,1) (4.26)
subject to the boundary conditions
Cazﬂyuﬁ)y(x,o,t)=o_ (4.2

PHYSICAL REVIEW E66, 036615 (2002

w* (z|g)exd —igq(x—Cgt)], sum overa, integrate ovek from

0 to L, and overz from 0 to . When integrating by parts
and making use of the boundary conditigds29 and(4.27),
we are led to the evolution equation

9
N[IE_JFA(Q)JAq:}k: K(=0.k,a= KAk,
(4.30

whereN is given by Eq.(4.10 with pg replaced bypy,

NA(Q)=f:dZ{Pl(Z)(CRQ)ZWZ(ZlOI)Wa(Z|Q)—5Saﬁw(2)

X[DB(Q)Wa(ZM)]*[DV(Q)W#(ZM)]}v (43])

K(ql a2 !q3) = foxdzasaﬁ,uv{g(Z)[Dﬁ(ql)wa(z|ql)]

X[D,(d2)W,,(z|d2)I[D (a3)wW,(2]g3)].
(4.32
The evolution equatiofd.30 with the coefficients defined in

Eqgs.(4.10, (4.31), and(4.32) is of quite general validity and
may be applied to anisotropic media with depth-dependent

A solution of these equations may again be constructed as'gaterial parameters. The linear dispersion law is given by

superposition of Rayleigh waved.4) with amplitudes that
are allowed to depend on a “slow” time variabte= ¢ ¥4.
At order O(£%?), we obtain

pou(az}(xvz!t) - Caﬁ’,ul/u,s;.z,)ﬁv(xizat)

J
= % 2iC, ApoW,(2]0) 7~ +p1(2)(C;0) "W, (2])
+D 5(0) 3Sup,,(2)D (AW, (2] q) | Ag( 7)€"~ CRY

+q2k D (q+K) 8S, 4,42 D (AW, (2]q)]

X[D (KW (Z]K) JAG(T)A( 7)€/ TTOUCRY, (4,28

Coazi2,(x,01)

=— 5sazw<0>§ [D,()W,(Z|a)],=0Aq(7)

xe‘q<X‘°R‘>—qu S pvee(0)[D L (AIW,(Z|9) 1,=0

X[Dg(K)W,(Z|K) ] o= oAq( T)A( 7)€ dT I CRY,
(4.29

In Egs. (4.28 and (4.29, we have introduced the operator

D, (q)=0d,4q+ 8,,9/9z.

We now apply the projection method, i.e., we multiply the

right-hand and left-hand sides of

Eq(4.289 by

the functionA(q). Depending on the depth profile of the
mass density and second-order elastic modulipay depend
on the wave numbeq in a complicated way. The linear
dispersion term in Eq4.30 may be regarded as a solid state
analogue of the dispersion term in the intermediate long-
wave equation40] arising in fluid dynamics. When expand-
ing A(q) in powers ofq for smallq, the leading term is of at
least second order.

To establish the connection between E4.30 derived
for continuously varying material parameters and our previ-
ous considerations for a nonlinear film covering a linear sub-
strate, we now assume that thelependent parts of the ma-
terial parameters are strongly localized at the surface, for
example,

5SaﬁMV§§(Z)='§aﬂlw§§besz, (433)
8Supun(2)=8S,p,,0e " (4.34
p1(2)=p;be "7, (439

with 1/b being much smaller than the penetration depth of
Rayleigh waves. In this case, the coefficieftd, and K
take the form

NA(q)=p1(Cra)®W% (0]q)w,(0]q)
— 5S4, [ D p(DW,(Z| ) 15—

X[Dv(Q)WM(ZM)]z:oa (436
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K(Ql,Q2,Q3):éaﬂuvgg[Dﬁ(Q1)Wa(Z|Q1)]§:0 1= A e W (0[K)

X[D (d2)W,,(Z]d2)],-0 X[D,(K)W,,(z]k)]1,=o[ D (K)D (k)W ,(Z]K) 1,0 /K>,
X[D(a3)W,(Z|d3)].=0- (4.37) k2= 1Ay, eWE (0]K)

By using the linear boundary conditions satisfiedvipythe z X[Dy(k)WM(Z| k)]z=O[DB(k)D§(k)W{(Z| k)]§:0/k3,

derivatives ofw at z=0 may be eliminated in the expres-

sions (4.39 and (4.37 for the coefficientsNA, and KSZiAaﬁMV§§W2(0|k)
K(Ql!qZ!qB)r
X[D,(K)W,,(2]K) 13- o[ D s(K)D (k)W (k) ],= /K?,

1%
(&Wa(zlq)] = _FQBCBZMXquM(O|q)' (43& (44@
z=0

which are independent & Using Eq.(4.14), we transform

Keeping in mind that the depth-dependent contributiony,q generalized evolution equation into real space to obtain
6S,5,,(2) to the second-order elastic moduli is a correction

of order O(£%?), one may replace in Eq4.38 the elastic

J . N ~
moduli C by C+8S. In this way, the evolution equation U, + 07—{,31HU§+,82U§§+ a;UHU+ a,UHU,
(4.15 and the results for the coefficients occuring therein are §
recovered. +a3|:|(UU§)}=0. (4.41)

We briefly indicate that the evolution equati¢h.15 is
also obtained in a continuum description of an adsorbat
layer strongly bound to the surfa¢&6] with a strong in-
plane nonlinearity. This description leads to boundary condi
tions for the displacement field in the substrate which hav
essentially identical form as the ones for a nonlinear film.

%he real parameters; ,a,, a5 are linear combinations of the
real coefficients¢,, x5, k3. Equation(4.41) has conservation
form with the most general nonlocal nonlinear flux of second
%rder that involves one Hilbert transform and one spatial
derivative. In addition, the lowest-order dispersion term is
nonlocal too, and of the Benjamin-Ono type. The evolution
C. Generalization of the effective bOUndary conditions equatlons(415) and (419) goverr“ng non“near Ray|e|gh

The derivations of the evolution equatiof$.15,(4.19  Wave propagation in a linear substrate covered by a nonlinear
and likewise the integrodifferential equati®12 are based film may be regarded as special cases of this class of nonlo-
on the autonomous system of an elastic half space with a fregal evolution equations.
surface, having modified elastic properties near the surface,
in particular strong second-order nonlinearity. At the end of V. SOLITARY SOLUTIONS
this section, we further generalize boundary conditi@r) . - ) ) )
with the term(2.11). We do this by replacing the nonlinear ~ In the following, we are specifically interested in solitary

=) ) ) : wave and stationary periodic wave solutions in the gase
teg:erar%;w;éxsuﬁg&muV'XG((;()’((?( Ig)i% ((2).(6()))by;r|1$]$or§ =0. A traveling wave ansatz in E44.41) with n=¢—vr
ge P aPuvlE=p, N B 9N eads immediately to
this extension may not be of direct physical relevance, it
contains interesting aspects from the mathematical point o ~ ~ o~ a ~ o~ Ny
view as will become clear in the following section. For sim- b —B1HU = B2V~ aaU ,HU — a,URU  — a5H(UU,)
plicity, we take the linear substrate to be isotropic. The Car-  —const, (5.1
tesian indices then only run overand z. For the tensor

(A apuvee) We do not require any symmetry property exceptyhere the parameters have been rescaled by the factor 1/
that the indice andz occur in even numbers. When apply- For solitary wave solutions, that we are primarily interested
ing now the projection method in precisely the same way ag here, the constant on the right-hand side obviously has to

in Sec. IV A, but with the new generalized boundary condi-yanjsh. With the help of the convolution theordig), this
tion instead of Eq(2.6), we obtain the evolution equation  may pe rewritten in the form

iNin=—k2ﬁlBk—}k > kkiBgByi_ N A T N Jlaitas., a; o,
aT 2 0<q<k a a HU+/31U,7+/5’2HU,7,7+(?—77 TU —7(HU)
+§k[kK3—q(K2+K3)]BqB;k}. + (a1~ a)H(URD,)=0. (5.2

(4.39 In the transition(5.1) to (5.2), care has to be taken in the
presence of periodic solutions with nonvanishing averages of
The coefficientsky,«,,x3 can be expressed explicitly in U andUAU, . Often, the Fourier transform of Eqgt.41)
terms of the tensor/A ,5,.;:) and the displacement field of and(5.2) is more convenient for further analysis and explicit
linear Rayleigh waves, calculations. Using the definition
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w 3.0 ' ' '
U(n)=f_ dk U, explikn) (5.3 ,. J
200 ., -
with |1 1! ]
U_=U;, (5.4 L e L [ X
we can rewrite Eq(5.2) in k space, using propertyA9) of 0.0 \ . ’ , |
the Hilbert transform, o 100 200 300 400
k 1 :
O=(1+,81k+32k2)Uk+ fo dq kz[al"' @yt a3]Uqu—q FIG. 3. Moduli of Fourier amplitude®,, resulting in the proce-

dure for the search of stationary periodic solutions of Eg41)
% . using Egs.(5.5 and (5.6, a;=a,=0. B8,9p=0.5, B,q3=0
+ fk da{k[ei—az+ az]+20[az—a1]}UqUG_ (5.5  (dashed ling 810o=0, B,02=0.05(solid line).

) . tionary solutions have been found numerically with the help
for wave numberk=0. [The corresponding equation fér ot the procedure descibed above. Here, the Fourier ampli-
<0 follows from Eq.(5.5) with Eq. (5.4).] The first of the  {,4es rapidly converge to ze(®ig. 3. For 8,q5—0, these

two nonlinear terms in EqS.5) represents summation pro- gqtions become periodic pulse trains consisting of strongly

cessesK bemg the sum of _the wave numbeqsmdk—_q of Jocalized pulses. Two examples are shown in Fig. 4. A linear
the two Fourier amplitudgsincluding second-harmonic gen- giapijity analysis has been carried out for these periodic so-
eration. The second term corresponds to difference processggions on the basis of the evolution equatih4l). They
Eﬁebmggthjrizle:ﬁgﬁtié);stﬁggﬁcﬁrﬁ%?ggggI)kagzi have been found to 2exhibit oscillatory instabilities for the
(5.2 suggests that solutions can be found as even functionrsange of parametgfi investigated 37
of 7. Consequently, the Fourier amplituddg may be taken B. Solitary waves of Benjamin-Ono type
to be real. '
In spite of the fact that fop3,=0, the linear dispersion
term and at least part of the nonlinearity in evolution equa-
tion (4.41) carry the same number of spatial derivatives, Eq.
The integrodifferential equatio(8.12, governing travel-  (4.41) does have solitary wave solutions f85=0 and cer-
ing nonlinear Rayleigh waves in a linear substrate covereggin choices of parameters, , a,, a3, that can even be ex-
by a nonlinear film, corresponds to the special cage @, pressed analytically. The nonlinear term in E§.5) associ-
=0. If, in addition, 8,=0, there is the same number of ated with summation processes is of special form in these
derivatives in front of the linear dispersion term and the non¢gses.

linear term. Alternatively, in the Fourier space versiérb), First we shall investigate the case;=—a,=1,a3
the linear dispersion term and the nonlinear terms containthe 9 3. =1, for which our equation has solutions of

same power ok. As a consequence, the linear dispersiongenjamin-Ono type. Equatiof5.1) then has the form
term is not sufficiently efficient in suppressing higher har-
monics, and the existence of stationary solutions is not ex- U- HU,]—G,,HU+UI:|U,,=0. (5.7)
pected.

In a search for periodic stationary solutions, one may proAlthough Eq.(5.7) differs from the corresponding reduction
ceed as in Ref5] and convert Eq(5.5) into an infinite set of  (3.13 of the Benjamin-Ono equation, it admits the same
algebraic equations using the ansatz

A. Nonlinear Rayleigh waves

2

Qo3

U= &(k—ndp) Qns (5.6

with some fundamental wave numbep=2=/\ and n 1D
=1,2,...,Q_,=0Q,. In numerical calculations, the system

of coupled algebraic equations is truncated, requiripg 0
=0 for n>N with some given intege. The resulting finite

system of equations is solved by a Newton-Raphson routine, D T N T T

and N is then successively increased. Figure 3 shows a re- -0.5 0.0 0.5

sulting Fourier spectrum. Even witi=400, there is no in- x/?\

dication of a convergence of the Fourier amplitudgs to

zero. FIG. 4. Periodic pulse train solutions of E@.41) with 8,

When the Benjamin-Ono type dispersion term is replaced=0, a;=a,=0, determined via Eqs(5.5 and (5.6). S3,03
by the KdV-type dispersion, i.e3,=0, 8,#0, periodic sta- =0.05(solid line), 8,95=0.15 (dashed ling
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solitonlike solution. This solution has powerlike asymptotic U |s~In(1+ %?). (5.12
behavior as common for solitary pulses in multidimensional
systems. The Fourier transform of this solitary solution has a Following Ono[39] we can find a periodical generaliza-
simple form, tion of the solitary solutior{5.9). Using the formulagA6) it

is easy to verify that this solution has the form

U =exp—1k|). (5.8 b2
But in spite of their identical form, the physical nature of U(n)= 1-bcog7/l)’ (5.13
these solutions differs. When transforming back to the initial
variables, our solution has the form where the period of the wave is= 27l = 27b?%/\1-b? and
b=<1. The periodic solutior{5.13 transforms into the soli-
tary pulse(5.9) in the limit b—1. This periodic solution as
U(é,7)= (5.9  well as the solitary ong5.9) would be accompanied by a

_ 2.2’
1+B(§-vn)™ nonzero average deformation of the surface.
whereA andB are fixed constants for give@;,a,a,,a3.
The corresponding solution of the Benjamin-Ono equation
differs from Eq.(5.9), The second combination of parameters, i = 1,2,3,
which leads to simple analytic solutions, is the following:

C. Solitary waves in the absence of summation processes

Av

U(f,T):W. (51@ 1=y, a3=—2a1. (5.14)

We also puta;=1,8;=1. In this case Eq(5.2) reduces to
So, the Benjamin-Ono soliton solutioi®.10 contains the

familiar relation between the amplitude and the width of the R .
soliton: Uy~ 1/A, whereUy~v is the amplitude of a soliton HU+U, - %[UZJF(HU)Z]:O' (5.19
andA~1/v is its width. As in the Benjamin-Ono equation,
the solitary wave solutiorf5.9) has the widthA~1/ and  The same nonlinearity as appearing in E8.15 had been
this width tends to infinity in the limib—0. But in contrast ~ considered by Huntg8] in an evolution equation without a
to the Benjamin-Ono equation the amplitude of this solitarylinear dispersion term. Hence, the linear parts of &ql9
pulse is fixed, which is quite unusual in soliton theory. and the corresponding evolution equation in Ref] are
By inserting Eq.(5.8) into Eq.(5.5), one may verify that ~quite different.
the nonlinear term associated with summation processes van- Since the linear dispersion term and the nonlinear term in
ishes and need not be compensated by a linear dispersidl. (5.19 both appear as a first derivative with respect;to
term. Another interesting feature of the choice of parameter§ne would naively expect that no solitary wave solution can
a;=—a,,a3=0 is that there is no second-harmonic genera£xist since the linear dispersion is not strong enough to sup-
tion in this case. press higher harmonics generated by the nonlinearity. How-
The solution(5.9) is unphysical for the following reasons. €ver, inspection of the Fourier-space version of &ql9),
First of all, the longitudinal displacement associated with it

N

has the following form: (1+k)Uk:2kfk dqUaU%_, (5.16
Ux(x,0)= arctaf VB(V—Cg)(x—=V1)] for k>0 reveals that for this special choice of nonlinearity,
VB(V— R summation processes are absent. Consequently, generation of

(5.1)  higher harmonics does not take place and the existence of
solitary waves for this equation does not come as a surprise.

and the total deformation of the filmu,(+,0)—u, Equation(5.15 has the following solitary wave solution:
(—,0t) would be nonzero. Usually in one-dimensional

elastic nonlinear systems the total deformation connected _
with a soliton is nonzero to§38]. However, in our effec- U(n)=4
tively two-dimensional system only spatial regions near the
surface can be deformed and the strain decreases in the deptn. o - .

: which can be verified by substituting the Fourier transform
of the bulk. A nonzero total deformation at the surface .

. . of the solution(5.17),
would also imply a nonzero deformatiom,(+,z,t)
—Uy(—2,z,t) independent of the depth U= 2|k|exp(—|k]), (5.19
Due to the complicated two-dimensional strain distribu-

tion in the substrate and due to the connection between thato the integral equation(5.16. [Compare this Fourier
two components of the displacements in the sagittal plandgransform with Eq.(5.8) for the Benjamin-Ono-type solitary
the z component of the displacement field at the surfacepulse]
would diverge at large distances from the center of the soli- The profile of the soliton solutio(b.17) is shown in Fig.
tary pulse. From Eq9B2) and (A4) it follows that 5. In contrast to the Benjamin-Ono-type solution of the pre-

1
(P+1)2  (rP+1)

, (5.17
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FIG. 5. Solitary wave solution$5.17) (solid line) and (5.39
with parameterg5.35 (long dashed lineand (5.36) (short dashed

line) FIG. 6. Two-dimensional representation of the surface acoustic
ine).

solitary wave(5.21). n«x—Vt, x coordinate parallelz coordinate
_ normal to the surface.

ceding subsection, it satisfies the conditigii,.U(7)d7y

=0, that has to be imposed on the strain /dx associated \yritten in polar coordinatex=r sin¢$,z=—1+r cos¢, by

with surface waves. _ which it assumes the simple representation
Using the relationgB2), one is led to

~ 4cos
1 7 e 1 1 (5.19 U=—22¢. (5.23
V=Cri+y?" 7 W=C 1+7* J

So in contrast to a “usual” soliton the amplitude of these A graphical representation is given in Fig. 6.

Rayleigh solitary waves diverges in the linvit—C, . By the analogy to the above resu(&9),(5.13 the struc-
Using the Green’s function of the Laplace equatisee, ture of the periodic generalization of the solitary solution

for example, Ref[41]) and the relation(1.4) we can easily (5.17 is almost evident. Such solution has the form

connect the longitudinal and transverse distributions of de-

Ux

formation on the surfacéu/dx|s and in the bulk of the sub-  _ 2,2 Y 1
stratedu/ dx|,, , U= 5 > 5= > ,
1-y|(1-Vy1—~vy°cosyn)* 1—+1—~vy°cosyn
aul 1f°c dx’(x—x") Igau(x’) (5.20 (5.29
ox|, m —o(X—X')2+2%k% ox’ ’S' ' where the parametey (y<1) characterizes the period of

this nonlinear wavey=2/L. In the limit y— 0 the expres-
where k= \1—VZ/C?, V=C,, and C=C, for transverse sion (5.24 reduces to the solitary solutia.17).
and C=C, for longitudinal deformations. In k space the periodic solutiai®.24) has a simple form
Substituting the solitary solutiotb.17) into the formula ~ similar to that of the solitary solutiof5.17). For periodic
(5.20 and rescaling, we obtain the distribution of deforma-solutions with the spatial period (or with the fundamental
tion in the substrate wave numbery=2m/L) we introduce Fourier amplitudes
Q,, n=12,... via

O(m.2)=4 2(z+1)? 1

m2)= 2, 272 2, 2 - ”
[(Z+ D™+ 77° (z+ D)+ 7 U(n)=yn§1 Q. explinyn)+c.c. (5.25
()PP 5.2
(24 1)2+ 2R ' Then we have the following discrete system instead of inte-

gral equation5.16):
where D(n,z)muL’x(x,z,t). We note that this two-

dimensional solution is very close to the lump soliton solu- ) ”
tion of the Kadomtsev-Petviashvili equatip0], (1+ny)Qn=2y an:1 QmQm+n, n>0. (5.2
~ 22+1— 9 . . . . . .
Uu~—— . (5.22 It is easy to obtain the following solution of this equation:
(22+ 1+ 772)2
This fact confirms the two-dimensional nature of the Ray- Q,= 27n2 exp( —ninA /ﬂ . n>0. (527
leigh solitary waves. The solitary solutigh.21) can be re- 1—vy 1-vy
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Note that this solution has zero average consistent with the 3 3 1
exclusion of the 1= 0)-component in E¢(5.26). In the limit 3125(3—\5), a2=§(3—2\5), b=§(3—\/§)-
vy—0, yn=Kk this solution transforms into the solitary solu- (5.36
tion (5.17).

An interesting property of Eq5.19 is the existence of For the calculation of solitary solutions in coordinate

additional solitary wave solutions which may even form anspace we can use the formula
infinite set of solutions. Such solutions can be sought by

using the following ansatz in E¢5.16): o « d\n
dk cosk ke PIk = —A—) — (53
N f 0 7 dn/ b2+ 2 (537
U= 2 an/k|"e "X, (5.28
n=1 and represent the solution of ordgrin the form
which is a generalization of Eq(5.18, where a,, n N g\n
=1,... N andb are constants to be determined. Inserting U(N)(W)ZZE a _ﬂ_) - (5.39
this ansatz into Eq(5.16) and putting all coefficients in front Fe T dn/ p2+ 52
of the different powers ok equal to zero, we getN+1)
algebraic equations far,, n=1,... N andb, i.e., we have |t is evident from this expression thdf’ . U(7)d»=0. In
as many equations as we have parameters to determinge particular case of the above solutidss35 and (5.36
These equations are we obtain
* _ 2
(7°+b%)?  (n°+Db?)
2 (= B 3
as+as+1=—.f dg e % (q)f9(q), s=1,...N-1, om0 (5.39
s Jo 2 ( 2+b2)3 ( 2+b2)2 ’ :
(5.30 7 7
2 (u The profiles of these solitary solutions are shown in Fig. 5.
an=g7 dq e 2% (q)fMN(q), (5.3) We see t.hat the field distributions in the so_lut_i(ﬂal?) and
*Jo the solution with paramete($.35 are very similar. But the
) . displacement profiles in the substrate are quite different. It is
wheref(q) is the polynomial, easy to show that after using formula.20 with the result
N (5.38 we can rewrite the two-dimensional solutions for the
f(q):nZ aq" (5.32 Rayleigh solitary waves as
- & &
andf®(q) =%t (q)/9q°. For example, there are three equa- U(7%,2)= Ta g tag oAt
tions fora,,a,,b in the case oN=2, K a7 a7

1 ©
a1:a1a22|3+a§2|4, X_f dﬂ,F(n,_nuz)
m) -

b2+(77/)2
1:a12|2+a22|3, &2 (94 0—,6
1=ayl,+ayl,, (5.33 T TR T e e
where 1 (= 7'
x—f do'F(n' =72 5———, (540
= 2n! m) T T g e
|n(b)=2f dg e ?9g"=—"—. (5.34
0 (2b) whereF (5’ — 7,2) is the kernel of the integral in E45.20),
In addition to the previous solutiof6.18 with a;=2a,
=0,b=1 the system of equation$.33 has two additional F(yp' —n2)= + . (5.4)
solutions (n'=m)—iz (n'—n)+iz

3 3 1 It is convenient to introduce polar coordinates with origin
a=5(3+ V3), a2=§(3+2\/§), b=3(3+ V3) having distancé from the surface of the half space outside
(5.35  the substrate,
and z=—b+rcos¢, n=rsing. (5.42
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In these coordinates the expressions for the solitary waves in ACKNOWLEDGMENTS
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Consequently, in two-dimensional space the higher-order
solitary solutions have different symmetry.

For N=3 there exist two additional solutions. The  We use the following definition of the Hilbert transform
first  having parameters b=4.07, a;=15.48, a, Ref. [42]:
=47.49, a;=131.19 has the profile similar to the expres-

APPENDIX A

sion (5.39 with the parameter$5.35), i.e., has only one . 1 (= dx ,

zero; the second solution with=0.15, a;~—0.05, a, HI)=—] x’—xf(x ). (A1)

=0.04, az=-—0.006 has the symmetry of the previous so-

lution (5.39 with parameters5.36). In addition to the well-known skew-symmetric relationship
CONCLUSIONS HHf(x)=—f(x), (A2)

The main goal of this paper has been an investigation intéhe Hilbert transform satisfies the convolution theorem Ref.
existence and properties of solitary surface acoustic waved#3],
propagating in a homogeneous elastic half space with linear . R . A
dispersion and nonlinearity introduced via the surface. For H(fe)=fHe+eHf+H[(Hf)(He)]. (A3)
this purpose, we have derived effective boundary conditions . _
at the surface of the elastic half space that represent EBor the study of solitary waves the following formulas are
strongly nonlinear thin film. An advantage of surface acousYSeful[42]:
tic waves over other wave systems is the possibility of easily

mar_upula_tlng the_lr propagation properties via the _surface. Es- A(LR)=-x/aR, H(LR") = iﬂ 1 ’
pecially linear dispersion can be tailored by coating the sur- 2(h—1)a da Rn-1
face or by letting other materials diffuse into or react with (A4)
the substrate material. For the latter reason, we have also

considered half spaces with continuously varying material 1 J . X

properties and strong nonlinearity near the surface. For these H(X/R)=a/R, H(x/R")=—
systems, evolution equations for nonlinear Rayleigh waves
have been derived that contain nonlocal linear dispersion and

nonlocal second-order nonlinearity. whereR=a2+x2 anda is a parameter.

Sgbsequen_tly, the effective boundary _conditions 'ePre-  For the investigation of periodic waves one may [G]
senting a nonlinear film have been generalized. For this gen-

2(n—-1)a %HRn—l’
(A5)

eralized system, an evolution equation has been derived that 1 ( b sinax )
contains three nonlocal nonlinear terms. The physically more  H-—————=—sgna ,
relevant case of a nonlinear film covering a linear substrate 1-bcosax ’ V1-b?*(1—bcosax)

forms a special case. For this case, numerical analysis re- (A6)
vealed that solitary wave solutions are likely to exist only in )

the presence of higher-order linear dispersion. Periodic pulse ~ p_ SiNax sgna vi-b _ E) (A7)
train solutions have been computed that have been found 1—bcosax b(1—bcosax) b/’

unstable, exhibiting oscillatory instabilities. ] ) ) ]
other special cases. In one of these, a whole family of trav@nd solutions in this paper we use
eling solitary wave solutions has been identified, its members

having different shapes. These solitary pulses exhibit an al- H sinkx= Lcoskx, (A8)
gebraic decay both into the substrate and along the surface. K|
For the evolution equations with nonlocal nonlinearity as ‘
studied in this paper, analysis in Fourier space often proves ~ L .
to be preferable to real space. On the one hand, solutions can H explikx) =i K| eXpikx). (A9)

be found more easily in this way. On the other hand, decom-
position of the nonlinearity in Fourier space into summation
. - : APPENDIX B
and difference processes and inspection of these two parts
yields a better understanding of the counterplay of linear The connection between the components of deformation
dispersion and nonlinearity in nonlocal evolution equations.associated with a linear monochromatic wave at the planar
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surface of an elastic half space is

aul, aul .
_ _ _\/2/2
U x 1-V?/C?Hw,
| t
Jdu N Ju
8—;=\/1—V2/C,2Hv, a—;:(l—vz/cf)w,
| t
au, . au
X \/l V/C|HU., X W,
au! ot
2 (1-Vv?c2 77z [ \21020
=~ (1=VAIChu, —==\1-VZCiAw.

(B1)

PHYSICAL REVIEW E 66, 036615 (2002

It is then easy to find the expressions for the total deforma-
tions using the relationB1) and(1.6),

o, V2 au, C2| v2
_:_Uv —_ = L5 _Ul
dx  2C2 9z C?)2c?
au, Kk V? . duy . V? o
X Ki2C2 0z | 2C? v
(B2)
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