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Solitary Rayleigh waves in the presence of surface nonlinearities
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The propagation of Rayleigh waves is investigated in a solid substrate of linear material covered by a film
consisting of a material with large nonlinear elastic moduli. For this system, a nonlinear evolution equation is
derived that may be regarded as a special case in a wider class of evolution equations with a specific type of
nonlocal nonlinearity. Periodic pulse train solutions are computed. For a certain member of the class of
nonlinear evolution equations, several families of solitary wave solutions and their associated periodic station-
ary wave solutions are derived analytically.
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INTRODUCTION

Recently, renewed interest~both experimental and theo
retical! has developed in nonlinear surface acoustic wav
This is partly due to new experiments on the propagation
high-intensity surface acoustic pulses@1–3# and on wave
form evolution of initially sinusoidal Rayleigh waves@4# and
partly due to interesting and sometimes controversially d
cussed topics in the theory of nonlinear surface acou
waves as the existence of stationary waves in the absen
linear dispersion@5–8# and shock formation or wave break
ing of nondispersive nonlinear Rayleigh waves@9–14#. From
a mathematical point of view, the nonlocality of the nonli
earity arising in the theoretical description of nonlinear Ra
leigh waves@8,13,15–18# is an interesting phenomenon an
its consequences are yet little explored.

It is well known that in the case of an isotropic elastic h
space there exist two main types of surface waves:~1! Ray-
leigh waves, having sagittal polarization with two nonze
components of the displacement field~two-component field!,
which are coupled due to the boundary conditions at
surface, and~2! Love waves, having shear-horizontal pola
ization ~one-component field!. The latter only exist in the
presence of a film of different material covering the substr
@19,20#. The density of energy in surface waves can be v
large due to its localization in a narrow domain near
surface and so nonlinear effects can be expected to be
nificant for such types of waves. Nonlinear effects in conn
tion with surface acoustic waves have been investigate
the past to a large extent, in the case of shear-horizo
waves mostly on the theoretical side focussing on envel
solitons @21# ~for references to earlier work see Ref.@22#!.
Recently, a number of experimental studies have been
ried out on nonlinear wave form evolution of Rayleig
waves in the presence of linear dispersion@23–25,4,2#. In
some of these experiments@23,2#, linear dispersion of the
Rayleigh waves was generated by covering the subs
with a film made of a different material.
1063-651X/2002/66~3!/036615~15!/$20.00 66 0366
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In these earlier investigations, the dominant nonlinea
has been that of the substrate. As the film thickness
mostly been small in comparison to the characteristic wa
length of the surface acoustic waves, the film constitu
only a small fraction of the volume, where the strain is hig
This is no longer the case when the film is not tightly bou
to the substrate@26#. When allowing for slippage at the in
terface between film and substrate, the weakly dispers
quasilongitudinal mode of the film is weakly coupled to t
substrate. Its strain field is mainly localized in the film, a
the Benjamin-Ono equation was found to be the evolut
equation for weakly nonlinear waves of this kind@26#.
Porubov and Samsonov have also investigated the gen
case of a nonlinear film covering a nonlinear substrate@26#.
They have derived an evolution equation which they ha
subsequently reduced to the nonlinear Schro¨dinger equation
to derive approximate stationary periodic solutions.

In the following, we focus on a situation where the film
tightly bound to the substrate, but where the effects of
nonlinearity of the film are still much larger than those of t
substrate nonlinearity such that the latter may be neglec
This situation may occur when certain nonlinear elas
moduli of the film have much larger values than those of
substrate. The motivation for this study is twofold. On t
one hand, this system leads to interesting new nonlinear e
lution equations that deserve to be studied from a mathem
cal point of view. On the other hand, this system, consist
of a nonlinear film on a linear substrate, is in some respe
simpler than the systems with the nonlinearity of the su
strate being the dominant one. Because of the linearity of
substrate, the displacement field in the substrate may be
mally eliminated. In this way, results may be tested that
obtained by applying standard asymptotic methods to the
equations of motion and corresponding boundary conditi
for weakly dispersive surface waves. Solitary surface aco
tic waves are essentially two-dimensional objects since t
associated displacement field depends on a coordinate p
lel to the surface as well as on a depth coordinate. Once
©2002 The American Physical Society15-1
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displacement field is known at the surface, it can be co
puted at any point in the linear substrate simply by us
Green’s functions. The analogous problem in the case
nonlinear substrate would be much more complica
@27,28#.

The paper is organized in the following way. In the fo
lowing section we briefly review the theory of linear surfa
acoustic waves propagating in an isotropic substrate co
by a thin film. The presence of the film is accounted for
effective boundary conditions@29,30#. In Sec. II, the deriva-
tion of these effective boundary conditions is extended
include the second-order nonlinearity of the film and high
order linear dispersion. With the help of these nonline
boundary conditions at the surface of the substrate an
traveling-wave ansatz for the sagittal components of the
placement field, the system of equations of motion a
boundary conditions for the displacement field is reduced
a single integrodifferential equation for one scalar variable
Sec. III. In Sec. IV, an evolution equation for Rayleigh wav
in the system under consideration is derived using a pro
tion method in very much the same way as for Rayle
waves in nonlinear substrates@5,31#. This procedure is gen
eralized to account for anisotropy of both the film and t
substrate material. Using this method, it is then shown
the same evolution equation holds for systems with conti
ously varying elastic moduli with certain elastic moduli b
ing very large near the surface. With a traveling wave ans
this evolution equation is reduced to the integrodifferen
equation derived in Sec. III in a more direct approach.

At the end of Sec. IV, the physical system is further ge
eralized to allow for additional nonlinear terms in the effe
tive boundary conditions of Sec. II, that are not generated
the elastic nonlinearity of a covering film. For generaliz
systems of this kind, a class of evolution equations with n
local nonlinearity results. The equation governing propa
tion of nonlinear Rayleigh waves in a linear substrate c
ered by a nonlinear film~Sec. IV A! represents a special cas
in this class.

In Sec. V, the evolution equations derived in the previo
sections are analyzed. Numerical solutions are presente
the special case of Sec. IV A corresponding to periodic s
tionary nonlinear Rayleigh waves. For other special ca
analytic solitary wave and stationary periodic wave solutio
are derived, and their depth profiles are discussed. The p
ends with a short conclusion.

I. LINEAR SURFACE WAVES IN LAYERED STRUCTURES

At first let us briefly discuss the linear case. The geome
of the system under consideration is sketched in Fig.

FIG. 1. Geometry.
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whereh is the thickness of the coating film, the waves prop
gate along thex direction, and thez axis is directed normal to
the surface into the volume.

The equation of motion for the bulk material in the is
tropic case has the form

]2

]t2 u5Ct
2Du1~Cl

22Ct
2!grad divu, ~1.1!

whereu is the displacement vector,Ct andCl represent the
velocities of transverse and longitudinal bulk waves. T
mass density will be calledr. For simplicity, we shall as-
sume that the material of the coating differs from the su
strate only in its densityrF . ~For the existence of Love
waves it is necessary to have a ‘‘heavy’’ covering film wi
rF.r.!

Assuming that only sagittal componentsux anduz of the
displacement field are nonzero, one obtains the follow
effective boundary condition at the surface@29,30#:

rCl
2S ]uz

]z
1~122Ct

2/Cl
2!

]ux

]x D5h~rF2r!
]2uz

]t2
, ~1.2!

rCt
2S ]ux

]z
1

]uz

]x D5h~rF2r!
]2ux

]t2
, z50 . ~1.3!

In the case of purly shear-horizontal waves we have only
condition, namely, Eq.~1.3!, with the displacement compo
nentux replaced byuy .

It is convenient to represent the displacement vectoru as
the sumu5ut1ul of transverseut and longitudinalul parts,
which satisfy two-dimensional wave equations. In the case
stationary wavesu5u(x2Vt,z), propagating in thex direc-
tion with the constant velocityV, the functionsut and ul

satisfy the two-dimensional Laplace equation. So for all
componentsu of vectorsut and ul we have the following
connection between their derivatives at the boundary pl
z50:

]u

]z U
s

5A12V2/C2Ĥ
]u

]xU
s

, ~1.4!

whereC5Cl for longitudinal components,C5Ct for trans-
verse components, andĤ denotes the Hilbert transform op
erator.~The main properties of the Hilbert transform need
for our purposes are listed in Appendix A.! Using the evident
connection between the components oful andut: ]ux

t /]x5

2]uz
t /]z and ]ux

l /]z5]uz
l /]x, we can express all compo

nents of deformation on the surface in terms of two of the
for example,v5]ux

l /]x and w5]uz
t /]x ~see Appendix B!.

After substitution of these relations into formulas~1.2!,~1.3!
we can rewrite them in the simple form,

F ~22V2/Ct
2!1d~V/Ct!

2k tĤ
]

]xGw
1F2k l Ĥ2d~V/Ct!

2
]

]xGv50,
5-2
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F ~22V2/Ct
2!1d~V/Ct!

2k l Ĥ
]

]xGv
2F2k tĤ2d~V/Ct!

2
]

]xGw50, ~1.5!

where d5h(rF2r)/r, k t5A12V2/Ct
2, and k l

5A12V2/Cl
2. In our long-wave approximationd]/]x;dk

is small and in the leading order in this small parameter,
connection between the functionsv and w readily follows
from Eq. ~1.5!,

w52
1

~22V2/Ct
2!

S 2k l Ĥ2
1

2
d

V4

Ct
4

]

]xD v, ~1.6!

and the equation for the dispersion relation,

F @~22V2/Ct
2!224k lk t#2d~V/Ct!

4~k l1k t!Ĥ
]

]xGv50,

~1.7!

which coincides with the corresponding result in Ref.@29# to
first order ind.

The first term in Eq.~1.7! gives the velocityCr of disper-
sionless Rayleigh waves in a half space without the cove
film. The presence of this film gives rise to an effective d
persion of Rayleigh waves, and it follows from Eq.~1.7! that

v.CR~k2dkukub!, ~1.8!

where

b5
CR

2

4Ct
4

~12CR
2/Ct

2!21/21~12CR
2/Cl

2!21/2

~Ct
22CR

2 !211~Cl
22CR

2 !2124~Ct
22CR

2 !21
.

~1.9!

Comparison of this expression with the corresponding
pression for shear waves@30#,

v.CtS k2
1

2
d2k3D , ~1.10!

shows that the dispersion of Rayleigh waves in the lo
wavelength limit is larger than the dispersion of Love wav

The existence of solitons and their structure in nonlin
evolution systems depends on the competition of nonline
ity and dispersion, and the properties of one-parametric
namical solitons with a stationary profile strongly depend
the value of the dispersionD5]2v/]k2 of linear waves in
the limit k→0 @32#. In the case of Rayleigh waves the di
persion in this limit is nonzero:D522Crbd in contrast to
Love waves and waves in many nonlinear evolution eq
tions of acoustical type~KdV, MKdV, Boussinesq equation
and others! with zero dispersion at the pointk50. Conse-
quently, solitary surface acoustic waves of Rayleigh type
expected to differ qualitatively from the soliton solutions
the above equations, but may bear similarities with those
the Benjamin-Ono equation that has the same linear dis
sion.
03661
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The dispersion relations~1.8! and ~1.10! are sketched in
Fig. 2~a! as a functionv5v(k). Since the frequencyv and
wave numberk are not convenient characteristics for a so
tary wave, let us rewrite the dispersion law in terms of gro
velocity V5]v/]k and the frequency in the frame of refe
ence moving with this velocityṽ(k)5v(k)2kV. The dis-
persion laws~1.8! and ~1.10! are shown in Fig. 2~b! as the
dependenceṽ5ṽ(V).

The hatched domains in Fig. 2~b! show the areas wher
dynamical envelope solitons can exist, and the solid line s
ments correspond to the one-parametrical solitary wave
stationary profile. But the velocities in segmentA are larger
thanCt and therefore, the corresponding solitary waves m
be unstable with respect to Cherenkov radiation of transve
bulk waves. Surface solitons can exist only in segmentDB.
The B end of this segment corresponds to the area of la
wave numbers in Fig. 2~a! and so solitary waves with veloci
ties V smaller, but close toCt

(F) (Ct
(F) is the velocity of

transverse waves in the material of the film! must be associ-
ated with large field gradients and continuum theory may
longer be appropriate. The solitary waves with velocitiesV
larger, but close toCr in the D end of the segmentDB can
exist and represent Rayleigh-type surface solitary wa
which are the main object of investigation in this paper.

II. NONLINEAR EFFECTIVE BOUNDARY CONDITIONS
AT THE SUBSTRATE SURFACE

If the thickness of the film is much smaller than the ch
acteristic wavelengths of the nonlinear surface waves un
consideration, one may expect that the displacement fiel
the nonlinear wave varies little over the distance between
interface atz50 and the surface atz52h. In this situation,
one may apply the method introduced in Refs.@29,30# to
eliminate the displacement field inside the thin film in fav
of an effective boundary condition at the surface for the d
placement field in the substrate. Here, we generalize
method to account for the elastic nonlinearity of the film.

In this section, quantities refering to the film bear a sup
script~F! or subscriptF while those referring to the substra
are marked by a superscript~S! or subscriptS. Expanding the
stress tensor at the surface in powers of the film thickne
we may write

05Taz
(F)~x,0!2hTaz,z

(F) ~x,0!1O~h2! ~2.1!

FIG. 2. Linear dispersion relations:v5v(k) ~a!, ṽ(V)5v(k)
2kV ~b!.
5-3
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and consequently

Taz
(S)~x,0!5hTaz,z

(F) ~x,0!1O~h2!, ~2.2!

wherea5x,z. In addition, we shall use the equation of m
tion for the displacement field in the film,

Taz,z
(F) ~x,z!5rFüa

(F)2Tax,x
(F) ~x,z!. ~2.3!

While the displacement field and its derivatives with resp
to x and t are continuous at the interface, this is usually n
the case for itsz derivatives. Therefore, we may replace t
time andx derivatives ofu(F) on the right-hand side of Eq
~2.2! by the corresponding derivatives ofu(S), but not thez
derivatives. The latter occur in Eq.~2.2! only as first deriva-
tives and may be expressed in terms of derivatives with
spect tox in the following way using the boundary conditio
at the interface in the form

Cazmz
(F) um,z

(F)~x,0!5Taz
(S)~x,0!2Cazmx

(F) um,x
(F) ~x,0!

2
1

2
Sazmxnx

(F) um,x
(F) ~x,0!un,x

(F)~x,0!

2Sazmznx
(F) um,z

(F)~x,0!un,x
(F)~x,0!

2
1

2
Sazmznz

(F) um,z
(F)~x,0!un,z

(F)~x,0!. ~2.4!

Here,Cabmn
(F) are the second-order elastic moduli of the film

while Sabmnzj
(F) are the following linear combinations o

second-order and third-order elastic moduli@33#:

Sabmnzj
(F) 5Cabmnzj

(F) 1damCbnzj
(F) 1dazCbjmn

(F) 1dmzCabnj
(F) .

~2.5!

The first term on the right-hand side of Eq.~2.4! can be
neglected as it is of first order inh. Equation~2.4! may be
solved for the quantitiesum,z

(F)(x,0) by iteration to second or
der in thex derivatives of the displacement field. These s
lutions may be inserted into the right-hand side of Eq.~2.2!,
and theum,x

(F) (x,0) may be replaced byum,x
(S) (x,0). Confining

ourselves to terms of first order inh and second order in th
displacement gradients, we obtain the following effect
boundary condition:

Taz
(S)~x,0!5h$rFüa

(S)~x,0!2S̄axmx
(F) um,xx

(S) ~x,0!

2S̄axmxnx
(F) um,x

(S) ~x,0!un,xx
(S) ~x,0!%1O~h2!1O~u3!.

~2.6!

The definitions of the coupling coefficients occurring on t
right-hand side of Eq.~2.6! are given below,

S̄axmx
(F) 5Caxmx

(F) 2Caxbz
(F) GbgCgzmx

(F) , ~2.7!

S̄axmxnx
(F) 5Saxmxnx

(F) 2Samn
(1) 2Sman

(1) 2Snma
(1) 1Samn

(2) 1Sman
(2)

1Snma
(2) 2Sbzlzzz

(F) GbgCgzax
(F) GlsCszmx

(F) GzjCjznx
(F) ,

~2.8!
03661
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Samn
(1) 5Saxmxzz

(F) GzjCjznx
(F) , ~2.9!

Samn
(2) 5Saxbzzz

(F) GbgCgzmx
(F) GzjCjznx

(F) ~2.10!

and (Gab) is the inverse of the 333 matrix (Cazbz
(F) ).

The derivation of effective boundary conditions outline
above may be carried to higher orders in the film thicknesh
in a straightforward way. The linear term of second order
h on the right-hand side of Eq.~2.6! is given by

2
1

2
h2$@Caxmz

(F) Gmn2GabCbznx
(F) #rFün,x1@Caxmx

(F) GmnCnzgx
(F)

1Caxmz
(F) GmnCnxgx

(F) 2Caxmz
(F) Gmb~Cbznx

(F) 1Cbxnz
(F) !GndCdzgx

(F)

22Caxmz
(F) GmnS̄nxgx

(F) #ug,xxx%. ~2.11!

In the following, we shall suppress the superscript~S! at the
displacement field. The boundary conditions~2.6! may be
applied to any anisotropic nonpiezoelectric media. If the fi
material is isotropic, they greatly simplify and become

Txz
(S)~x,0!5hS rFüx~x,0!2FlF12mF2

lF
2

lF12mF
Gux,xx~x,0!

2
1

2 H ~2CF16BF12AF13lF16mF!

3F12S lF

lF12mF
D 3G23~2CF12BF1lF!

3
lF

lF12mF
S 12

lF

lF12mF
D J ]

]x
ux,x

2

2
1

2 F2~lF1mF!S 12
lF

lF12mF
D G ]

]x
uz,x

2 D
2

1

2
h2H 22mF

lF12mF
rFüz,x1FlF12mF

2
lF

2

lF12mF
Guz,xxxJ , ~2.12!

Tzz
(S)~x,0!5hH rFüz~x,0!22~lF1mF!

3S 12
lF

lF12mF
D ]

]x
@uz,x~x,0!ux,x~x,0!#J

1
1

2
h2H 22mF

lF12mF
rFüx,x1FlF12mF

2
lF

2

lF12mF
Gux,xxxJ . ~2.13!

Here,l and m are the~linear! Lamé constants, andA,B,C
are third-order elastic moduli of an isotropic elastic mediu
defined in Ref.@35#.
5-4
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When applying these boundary conditions, one has
keep in mind that the nonlinear terms on the right-hand s
of Eq. ~2.6! are more important than the corresponding no
linear terms in (Tab

(S)) if at least one of the nonlinear elast
moduli AF , BF , or CF is much larger than the correspondin
value of the substrate material. This means that one norm
has to keep only the first nonlinear term on the right-ha
side of Eq.~2.12! and may neglect the nonlinear term in E
~2.13!.

III. NONLINEAR TRAVELING WAVE ANSATZ

In Eq. ~1.2! we now replace the right-hand side by th
right-hand sides of Eqs.~2.12! and ~2.13!. When searching
for nonlinear wave solutions with stationary profile of th
form u5u(x2Vt,z) we can use the connection between t
components of deformation at the surface~B1! and rewrite
the two boundary conditions in the form

H 22~V/Ct!
22h

rFV22g0

rCt
2 k tĤ

]

]xJ w

1H 2k l Ĥ1h
rFV22g0

rCt
2

]

]xJ v

5
1

2
hH g1

rCt
2

]

]x
@v2k tĤw#2

1
g2

rCt
2

]

]x
@k l Ĥv1w#2J , ~3.1!

H 2k tS Ct

Cl
D 2

Ĥ1h
rFV2

rCl
2

]

]xJ w

1H S V

Cl
D 2

22S Ct

Cl
D 2

1h
rFV2

rCl
2 k l Ĥ

]

]xJ v

5h
g2

rCl
2

]

]x
@k l Ĥv1w#@v2k tĤw#, ~3.2!

where we have introduced the coefficients

g05l12m2
l2

l12m
, ~3.3!

g15~2AF16BF12CF13l16m!F12S l

l12m D 3G
23~2BF12CF1l!

l

l12m F12
l

l12mG , ~3.4!

g252~l1m!F12
l

l12mG . ~3.5!

For simplicity, we assume herelF5lS , mF5mS and sup-
press the indicesF andS at the linear Lame´ constants. The
first of the two equations~3.1! and~3.2! can be solved forw
up to first order in the film thicknessh,
03661
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w52
2k l

22~V/Ct!
2Ĥv

2
h

22~V/Ct!
2H rFV22g0

rCt
2 F12

2k lk t

22~V/Ct!
2G ]

]x
v

2
g1

2rCt
2 F12

2k lk t

22~V/Ct!
2G2 ]

]x
v22

g2

2rCt
2

3k l
2F12

2

22~V/Ct!
2G2 ]

]x
~Ĥv !2J 1O~h2!. ~3.6!

Inserting this into Eq.~3.2! leads to the following integro-
differential equation for the variablev:

H D~V!2h~V/Ct!
2
rF2r

r
~k l1k t!Ĥ

]

]xJ v

52h
k t

@22~V/Ct!
2#2 H g1

m
@22~V/Ct!

222k lk t#
2

1
g2

m
k lk t~V/Ct!

4J Ĥ
]

]x
v2. ~3.7!

Here, D(V)54k lk t2@(V/Ct)
222#2 is the Rayleigh deter-

minant, which is a small quantity, as the relative deviati
«5(V2Cr)/Ct from the velocity of linear Rayleigh wave
Cr is small,

D~V!.2n«[2«4jFk l
0

k t
0

1S Ct

Cl
D 2 k t

0

k l
0

1j222G.0,

~3.8!

where j5CR /Ct , k t
05A12j2, k l

05A12j2Ct
2/Cl

22.
In the derivation of Eq.~3.7! we have confined ourselves t
terms up to first order in the film thicknessh in the effective
boundary conditions~2.12!,~2.13!. If the h2 terms linear in
the displacement field are taken into account, the term

h2K
]2

]x2 v ~3.9!

has to be added to the right-hand side of Eq.~3.7!. For sim-
plicity, we have assumed in the derivation of Eq.~3.7! that
the linear Lame´ constants of film and substrate are identic
If in addition to the mass densities, the Lame´ constants of the
film differ from those of the substrate, an intregrodifferent
equation forv will be obtained that has the same form as E
~3.7! with partly different coefficients. In this more gener
case, the coefficient in front of the term linear inv and of
first order in h may vanish. More precisely, this happe
when @34#

rF /rS5cF /cS , ~3.10!

wherec5l12m2l2/(l12m). In this case, the coefficien
K has the form
5-5



he

e
a

o

th

ca

or
ho
d-

n

en

e
g

f

per-
ed

f

m-
in
rate

n

the

A. S. KOVALEV, A. P. MAYER, C. ECKL, AND G. A. MAUGIN PHYSICAL REVIEW E66, 036615 ~2002!
K5
1

2
j2~22j2!

cF

cS
F cS

mS
2

2mF

lF12mF

2@422~Ct /Cl !
2~j212!#

cF

cS
G , ~3.11!

where againj5Cr /Ct andCt , Cl , andCr are the velocities
of bulk shear, bulk longitudinal, and Rayleigh waves of t
substrate. Depending on the Lame´ constants of the film,K
can be positive or negative.

After rescaling of the coordinatex and field variablev,
Eq. ~3.7! assumes the form

Ũ2b1ĤŨh2b2Ũhh2a3Ĥ~ŨŨh!50, ~3.12!

with dimensionless coefficientsb1 , b2, and a3, and h}x

2Vt and Ũ being dimensionless, too. Already at this stag
we may note that Eq.~3.12! has the unusual feature of
nonlocal linear dispersion termand a nonlocal nonlinearity.
The lowest-order linear dispersion term is obviously that
the Benjamin-Ono equation, which reduces to

Ũ2ĤŨh2Ũ250, ~3.13!

with a traveling wave ansatz. This may be compared with
KdV case,

Ũ2Ũhh2Ũ250, ~3.14!

where both the dispersion term and the nonlinearity are lo

IV. DERIVATION OF AN EVOLUTION EQUATION

A. Boundary conditions corresponding to a nonlinear film

A convenient way of deriving evolution equations f
nonlinear guided acoustic waves is the projection met
@31#. Anisotropy may be accounted for with virtually no a
ditional complication, and the application of the method to
linear substrate with nonlinear effective boundary conditio
at the surface is particularly easy.

We start with an asymptotic expansion of the diplacem
field

u~x,z,t !5«u(1)~x,z,t !1«3/2u(2)~x,z,t !1O~«2!,
~4.1!

with a dimensionless expansion parameter«!1. We also
invoke the scalingh5O(«1/2) for the film thickness and
S̄axmxnx

(F) 5O(1/«) for ~at least some of! the nonlinear coeffi-
cients of the film material. This particular scaling has be
chosen to make sure that the effects of the film are lar
~and hence appear at lower order of«) than the nonlinearity
of the substrate.

The first-order fieldu(1) has to satisfy the equations o
motion

rSüa
(1)~x,z,t !5Cabmn

(S) um,bn
(1) ~x,z,t ! ~4.2!

subject to the boundary conditions

Cazmn
(S) um,n

(1) ~x,0,t !50. ~4.3!
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A solution of these equations may be constructed as a su
position of Rayleigh waves with amplitudes that are allow
to depend on a ‘‘slow’’ time variablet5«1/2t:

u(1)5(
q

eiq(x2Crt)w~zuq!Aq~t!. ~4.4!

The sum overq in Eq. ~4.4! runs over integer multiples o
2p/L, whereL is an arbitrary spatial periodicity.w(zuq) is
the depth profile of a linear Rayleigh wave with wave nu
ber q. It is a superposition of up to three exponentials
nonpiezoelectric media. In the case of an isotropic subst
andq.0, it has the familiar form

w~zuq!5S 1

0

ik l
(0)
D exp~2qk l

(0)z!

1KtS 1

0

i /k t
(0)
D exp~2qk t

(0)z!, ~4.5!

with the coefficient

Kt52Ak l
(0)k t

(0). ~4.6!

At order O(«3/2), we obtain from the equation of motion i
the substrate,

rSüa
(2)~x,z,t !2Cabmn

(S) um,bn
(2) ~x,z,t !

5(
q

2iCrqrSwa~zuq!
]

]t
Aq~t!eiq(x2Crt), ~4.7!

and from the boundary conditions~2.6!

Cazmn
(S) um,n

(2) ~x,0,t !

5h$rFCr
2dam2S̄axmx

(F) %(
q

q2wm~0uq!Aq~t!eiq(x2Crt)

2~h/2!S̄axmxnx
(F) (

q,q8
iqq8~q1q8!

3wm~0uq!wm~0uq8!Aq~t!Aq8~t!. ~4.8!

We now multiply Eq. ~4.7! by wa* (zuk)exp@2ik(x2Cr t)#,
sum overa, integrate over the area 0,x,L, 0,z,`, ap-
ply Green’s second integral theorem and make use of
boundary conditions~4.3!,~4.8!. With the transformation
Aq(t)5Bq(t)/( iq), we finally obtain

iN
]

]t
Bk52k2b̃1Bk1k2(

q
ā3~2k,q,k2q!BqBk2q .

~4.9!

The coefficients in Eq.~4.9! have the explicit form
5-6



f

e

u
w

l

i-
n

a

the
the

ion,

ch
The
tive

n in
ar
the

f
ace

SOLITARY RAYLEIGH WAVES IN THE PRESENCE OF . . . PHYSICAL REVIEW E 66, 036615 ~2002!
N52CrrSkE
0

`

uw~zuk!u2 dz, ~4.10!

which is independent ofk for an appropriate normalization o
w;

b̃15h@rFCr
2wa* ~0uk!wa~0uk!2S̄axmx

(F) wa* ~0uk!wm~0uk!#

~4.11!

is also independent ofk. The quantities

ā3~2k,q,k2q!5hS̄lxmxnx
(F) wl* ~0uk!wm~0uq!wn~0uk2q!

~4.12!

depend only on the signs of the wave numbersk, q, andk

2q, and they may be complex. Defining the coefficientã3

5ā3(2k,q,k2q) for k.0, 0,q,k, we may write fork
.0,

(
q

ā3~2k,q,k2q!BqBk2q

5ã3 (
0,q,k

BqBk2q12ã3* (
q.k

BqBq2k* ,

~4.13!

where we have made use of the reality of the displacem
field via B2k5Bk* . It is then evident that the coefficientã3

can be made real by the simple transformationBk
→Bk exp(if) with an appropriate phase anglef. Defining
now the scalar fieldU(j,t) via

U~j,t!5(
q

Bq~t!eiqj, ~4.14!

where j5x2Crt, the evolution equation~4.9! can be
brought into the real-space form

Ut1b1ĤUjj1a3Ĥ~UUj!j50. ~4.15!

We emphasize that this evolution equation applies to s
strate and film materials of arbitrary anisotropy. Making no
a traveling wave ansatzU(j,t)5Ũ(j2vt) with the veloc-
ity shift V2Cr5«1/2v, we are led to the integrodifferentia
equation~3.12!, whenh5j2vt.

If the coefficientb1 vanishes, a modification of the der
vation has to be applied to include higher-order dispersio
the evolution equation. We now apply the scalingh
5O(«1/4) andS̄axmxnx

(F) 5O(1/«3/4). The displacement field is
expanded as

u~x,z,t !5«u(1)~x,z,t !1«5/4u(2)~x,z,t !1«3/2u(3)~x,z,t !

1O~«2!. ~4.16!

It is an easy task to determine the fieldu(2) explicitly. The
boundary conditions at orderO(«5/4) merely lead to a modi-
fication of the coefficients in front of the exponentials th
constitutew(zuq). In the isotropic case, we may write
03661
nt
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u(3/2)~x,z,t !5DKt(
q

eiq(x2Crt)qS 1

0

i /k t
(0)
D

3exp~2qk t
(0)z!Aq~t!, ~4.17!

with the coefficient

DKt5
h@rFCr

22cF#

2m

k t
(0)@12~k t

(0)!2#

11~k t
(0)!2

. ~4.18!

At orderO(«3/2) the terms proportional toh2 of the effective
boundary conditions come into play as well as the fieldu(2)

in connection with the terms proportional toh in the bound-
ary conditions. One may proceed in the same way as in
above application of the projection method to arrive at
evolution equation

Ut1b2Ujjj1a3Ĥ~UUj!j50, ~4.19!

which has the same linear dispersion as the KdV equat
but it still has a nonlocal nonlinearity.

B. Continuously varying material properties

In the derivation of the evolution equations~4.15! and
~4.19! we have so far considered a thin nonlinear film whi
has a sharp interface with a homogeneous substrate.
presence of the film has been accounted for by the effec
boundary condition~2.6!,~2.11!. We now show that these
equations also govern nonlinear surface wave propagatio
a medium with continuously varying material properties ne
the surface and a large second-order nonlinearity in
neighborhood of the surface.

The system is described by the Lagrangian

L5E d3xH 1

2
ru̇au̇a2

1

2
Sabmnua,bum,n

2
1

6
Sabmnzjua,bum,nuz,jJ . ~4.20!

The mass densityr and coupling coefficientsSabmn and
Sabmnzj are now allowed to be functions ofz. These func-
tions are assumed to be differentiable forz.0. At z50, they
have a discontinuity and they vanish forz,0.

From Hamilton’s principle, the following equations o
motion in the medium and boundary conditions at the surf
are derived:

r~z!üa~x,z!5
]

]xb
Sabmn~z!um,n~x,z!

1
1

2

]

]xb
Sabmnzj~z!um,n~x,z!uz,j~x,z!50,

~4.21!
5-7
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Sazmn~0!um,n~x,0!1
1

2
Sazmnzj~0!um,n~x,0!uz,j~x,0!50.

~4.22!

Introducing again a dimensionless expansion paramete«
!1, we assume that the coefficients in the above equat
may be decomposed in the following way:

r~z!5r01«1/2r1~z!, ~4.23!

Sabmn~z!5Cabmn1«1/2dSabmn~z!, ~4.24!

Sabmnzj~z!5S̄abmnzj1«21/2dSabmnzj~z!. ~4.25!

With this choice of scaling, the linear dispersion and t
nonlinear terms associated withdSabmnzj(z) will be of the
same order of«, while the ‘‘background’’ nonlinearity with
coefficientsS̄abmnzj will appear at higher orders of«.

In an asymptotic expansion~4.1! of the displacemen
field, the first-order fieldu(1) has to satisfy the equations o
motion

r0üa
(1)~x,z,t !5Cabmnum,bn

(1) ~x,z,t ! ~4.26!

subject to the boundary conditions

Cazmnum,n
(1) ~x,0,t !50. ~4.27!

A solution of these equations may again be constructed
superposition of Rayleigh waves~4.4! with amplitudes that
are allowed to depend on a ‘‘slow’’ time variablet5«1/2t.

At order O(«3/2), we obtain

r0üa
(2)~x,z,t !2Cabmnum,bn

(2) ~x,z,t !

5(
q

H 2iCrqr0wa~zuq!
]

]t
1r1~z!~Crq!2wa~zuq!

1Db~q!dSabmn~z!Dn~q!wm~zuq!J Aq~t!eiq(x2CRt)

1(
q,k

Db~q1k!dSabmnzj~z!@Dn~q!wm~zuq!#

3@Dj~k!wz~zuk!#Aq~t!Ak~t!ei (q1k)(x2CRt), ~4.28!

Cazmnum,n
(2) ~x,0,t !

52dSazmn~0!(
q

@Dn~q!wm~zuq!#z50Aq~t!

3eiq(x2CRt)2(
q,k

dSabmnzj~0!@Dn~q!wm~zuq!#z50

3@Dj~k!wz~zuk!#z50Aq~t!Ak~t!ei (q1k)(x2CRt).

~4.29!

In Eqs. ~4.28! and ~4.29!, we have introduced the operato
Da(q)5daxiq1daz]/]z.

We now apply the projection method, i.e., we multiply t
right-hand and left-hand sides of Eq.~4.28! by
03661
ns

e

a

wa* (zuq)exp@2iq(x2CRt)#, sum overa, integrate overx from
0 to L, and overz from 0 to `. When integrating by parts
and making use of the boundary conditions~4.29! and~4.27!,
we are led to the evolution equation

NH i
]

]t
1D~q!J Aq5(

k
K~2q,k,q2k!AkAq2k ,

~4.30!

whereN is given by Eq.~4.10! with rS replaced byr0,

ND~q!5E
0

`

dz$r1~z!~CRq!2wa* ~zuq!wa~zuq!2dSabmn~z!

3@Db~q!wa~zuq!#* @Dn~q!wm~zuq!#%, ~4.31!

K~q1 ,q2 ,q3!5E
0

`

dzdSabmnzj~z!@Db~q1!wa~zuq1!#

3@Dn~q2!wm~zuq2!#@Dj~q3!wz~zuq3!#.

~4.32!

The evolution equation~4.30! with the coefficients defined in
Eqs.~4.10!, ~4.31!, and~4.32! is of quite general validity and
may be applied to anisotropic media with depth-depend
material parameters. The linear dispersion law is given
the functionD(q). Depending on the depth profile of th
mass density and second-order elastic moduli,D may depend
on the wave numberq in a complicated way. The linea
dispersion term in Eq.~4.30! may be regarded as a solid sta
analogue of the dispersion term in the intermediate lo
wave equation@40# arising in fluid dynamics. When expand
ing D(q) in powers ofq for smallq, the leading term is of at
least second order.

To establish the connection between Eq.~4.30! derived
for continuously varying material parameters and our pre
ous considerations for a nonlinear film covering a linear s
strate, we now assume that thez-dependent parts of the ma
terial parameters are strongly localized at the surface,
example,

dSabmnzj~z!5S̃abmnzjbe2bz, ~4.33!

dSabmn~z!5dS̃abmnbe2bz, ~4.34!

r1~z!5 r̃1be2bz, ~4.35!

with 1/b being much smaller than the penetration depth
Rayleigh waves. In this case, the coefficientsNDq and K
take the form

ND~q!5 r̃1~CRq!2wa* ~0uq!wa~0uq!

2dS̃abmn@Db~q!wa~zuq!#z50*

3@Dn~q!wm~zuq!#z50 , ~4.36!
5-8
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K~q1 ,q2 ,q3!5S̃abmnzj@Db~q1!wa~zuq1!#z50*

3@Dn~q2!wm~zuq2!#z50

3@Dj~q3!wz~zuq3!#z50 . ~4.37!

By using the linear boundary conditions satisfied byw, thez
derivatives ofw at z50 may be eliminated in the expres
sions ~4.36! and ~4.37! for the coefficients NDq and
K(q1 ,q2 ,q3),

H ]

]z
wa~zuq!J

z50

52GabCbzmxiqwm~0uq!. ~4.38!

Keeping in mind that the depth-dependent contribut
dSabmn(z) to the second-order elastic moduli is a correcti
of order O(«1/2), one may replace in Eq.~4.38! the elastic
moduli C by C1dS. In this way, the evolution equatio
~4.15! and the results for the coefficients occuring therein
recovered.

We briefly indicate that the evolution equation~4.15! is
also obtained in a continuum description of an adsorb
layer strongly bound to the surface@36# with a strong in-
plane nonlinearity. This description leads to boundary con
tions for the displacement field in the substrate which h
essentially identical form as the ones for a nonlinear film

C. Generalization of the effective boundary conditions

The derivations of the evolution equations~4.15!,~4.19!
and likewise the integrodifferential equation~3.12! are based
on the autonomous system of an elastic half space with a
surface, having modified elastic properties near the surf
in particular strong second-order nonlinearity. At the end
this section, we further generalize boundary condition~2.6!
with the term~2.11!. We do this by replacing the nonlinea
term2hS̄axmxnx

(F) um,x
(S) (x,0)un,xx

(S) (x,0) in Eq.~2.6! by the more
general expressionLabmnzjum,n

(S) (x,0)uz,jb
(S) (x,0). Although

this extension may not be of direct physical relevance
contains interesting aspects from the mathematical poin
view as will become clear in the following section. For sim
plicity, we take the linear substrate to be isotropic. The C
tesian indices then only run overx and z. For the tensor
(Labmnzj) we do not require any symmetry property exce
that the indicesx andz occur in even numbers. When appl
ing now the projection method in precisely the same way
in Sec. IV A, but with the new generalized boundary con
tion instead of Eq.~2.6!, we obtain the evolution equation

iN
]

]t
Bk52k2b̃1Bk2

1

2
kH (

0,q,k
kk1BqBk2q

1 (
q.k

@kk32q~k21k3!#BqBq2k* J .

~4.39!

The coefficientsk1 ,k2 ,k3 can be expressed explicitly i
terms of the tensor (Labmnzj) and the displacement field o
linear Rayleigh waves,
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k15 iLabmnzjwa* ~0uk!

3@Dn~k!wm~zuk!#z50@Db~k!Dj~k!wz~zuk!#z50 /k3,

k25 iLabmnzjwa* ~0uk!

3@Dn~k!wm~zuk!#z50@Db~k!Dj~k!wz~zuk!#z50* /k3,

k35 iLabmnzjwa* ~0uk!

3@Dn~k!wm~zuk!#z50* @Db~k!Dj~k!wz~zuk!#z50 /k3,

~4.40!

which are independent ofk. Using Eq.~4.14!, we transform
this generalized evolution equation into real space to obt

Ut1
]

]j
$b1ĤUj1b2Ujj1a1UjĤU1a2UĤUj

1a3Ĥ~UUj!%50. ~4.41!

The real parametersa1 ,a2 ,a3 are linear combinations of the
real coefficientsk1 ,k2 ,k3. Equation~4.41! has conservation
form with the most general nonlocal nonlinear flux of seco
order that involves one Hilbert transform and one spa
derivative. In addition, the lowest-order dispersion term
nonlocal too, and of the Benjamin-Ono type. The evoluti
equations~4.15! and ~4.19! governing nonlinear Rayleigh
wave propagation in a linear substrate covered by a nonlin
film may be regarded as special cases of this class of no
cal evolution equations.

V. SOLITARY SOLUTIONS

In the following, we are specifically interested in solita
wave and stationary periodic wave solutions in the caseb2
50. A traveling wave ansatz in Eq.~4.41! with h5j2vt
leads immediately to

Ũ2b1ĤŨh2b2Ũhh2a1ŨhĤŨ2a2ŨĤŨh2a3Ĥ~ŨŨh!

5const, ~5.1!

where the parameters have been rescaled by the factorv.
For solitary wave solutions, that we are primarily interest
in here, the constant on the right-hand side obviously ha
vanish. With the help of the convolution theorem~A3!, this
may be rewritten in the form

ĤŨ1b1Ũh1b2ĤŨhh1
]

]h Fa11a3

2
Ũ22

a1

2
~ĤŨ !2G

1~a12a2!Ĥ~ŨĤŨh!50. ~5.2!

In the transition~5.1! to ~5.2!, care has to be taken in th
presence of periodic solutions with nonvanishing average
Ũ and ŨĤŨh . Often, the Fourier transform of Eqs.~4.41!
and~5.2! is more convenient for further analysis and expli
calculations. Using the definition
5-9
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Ũ~h!5E
2`

`

dk Uk exp~ ikh! ~5.3!

with

U2k5Uk* , ~5.4!

we can rewrite Eq.~5.2! in k space, using property~A9! of
the Hilbert transform,

05~11b1k1b2k2!Uk1E
0

k

dq k
1

2
@a11a21a3#UqUk2q

1E
k

`

dq$k@a12a21a3#12q@a22a1#%UqUq2k* ~5.5!

for wave numbersk>0. @The corresponding equation fork
,0 follows from Eq.~5.5! with Eq. ~5.4!.# The first of the
two nonlinear terms in Eq.~5.5! represents summation pro
cesses (k being the sum of the wave numbersq andk2q of
the two Fourier amplitudes!, including second-harmonic gen
eration. The second term corresponds to difference proce
(k being the difference of the wave numbersq andq2k of
the two Fourier amplitudes!. The structure of Eqs.~5.1! and
~5.2! suggests that solutions can be found as even funct
of h. Consequently, the Fourier amplitudesUk may be taken
to be real.

A. Nonlinear Rayleigh waves

The integrodifferential equation~3.12!, governing travel-
ing nonlinear Rayleigh waves in a linear substrate cove
by a nonlinear film, corresponds to the special casea15a2
50. If, in addition, b250, there is the same number o
derivatives in front of the linear dispersion term and the n
linear term. Alternatively, in the Fourier space version~5.5!,
the linear dispersion term and the nonlinear terms contain
same power ofk. As a consequence, the linear dispers
term is not sufficiently efficient in suppressing higher h
monics, and the existence of stationary solutions is not
pected.

In a search for periodic stationary solutions, one may p
ceed as in Ref.@5# and convert Eq.~5.5! into an infinite set of
algebraic equations using the ansatz

Uk5d~k2nq0!
2

q0a3
Qn, ~5.6!

with some fundamental wave numberq052p/l and n
51,2, . . . ,Q2n5Qn . In numerical calculations, the syste
of coupled algebraic equations is truncated, requiringQn
50 for n.N with some given integerN. The resulting finite
system of equations is solved by a Newton-Raphson rout
and N is then successively increased. Figure 3 shows a
sulting Fourier spectrum. Even withN5400, there is no in-
dication of a convergence of the Fourier amplitudesQn to
zero.

When the Benjamin-Ono type dispersion term is repla
by the KdV-type dispersion, i.e.,b150, b25” 0, periodic sta-
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tionary solutions have been found numerically with the h
of the procedure descibed above. Here, the Fourier am
tudes rapidly converge to zero~Fig. 3!. For b2q0

2→0, these
solutions become periodic pulse trains consisting of stron
localized pulses. Two examples are shown in Fig. 4. A lin
stability analysis has been carried out for these periodic
lutions on the basis of the evolution equation~4.41!. They
have been found to exhibit oscillatory instabilities for th
range of parameterbq0

2 investigated@37#.

B. Solitary waves of Benjamin-Ono type

In spite of the fact that forb250, the linear dispersion
term and at least part of the nonlinearity in evolution equ
tion ~4.41! carry the same number of spatial derivatives, E
~4.41! does have solitary wave solutions forb250 and cer-
tain choices of parametersa1 ,a2 ,a3, that can even be ex
pressed analytically. The nonlinear term in Eq.~5.5! associ-
ated with summation processes is of special form in th
cases.

First we shall investigate the casea152a251,a3
50,b151, for which our equation has solutions o
Benjamin-Ono type. Equation~5.1! then has the form

Ũ2ĤŨh2ŨhĤŨ1ŨĤŨh50. ~5.7!

Although Eq.~5.7! differs from the corresponding reductio
~3.13! of the Benjamin-Ono equation, it admits the sam

FIG. 3. Moduli of Fourier amplitudesQn resulting in the proce-
dure for the search of stationary periodic solutions of Eq.~4.41!
using Eqs. ~5.5! and ~5.6!, a15a250. b1q050.5, b2q0

250
~dashed line!, b1q050, b2q0

250.05 ~solid line!.

FIG. 4. Periodic pulse train solutions of Eq.~4.41! with b1

50, a15a250, determined via Eqs.~5.5! and ~5.6!. b2q0
2

50.05 ~solid line!, b2q0
250.15 ~dashed line!.
5-10
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solitonlike solution. This solution has powerlike asympto
behavior as common for solitary pulses in multidimensio
systems. The Fourier transform of this solitary solution ha
simple form,

Uk5exp~2uku!. ~5.8!

But in spite of their identical form, the physical nature
these solutions differs. When transforming back to the ini
variables, our solution has the form

U~j,t!5
A

11B~j2vt!2v2
, ~5.9!

whereA andB are fixed constants for givenb1 ,a1 ,a2 ,a3.
The corresponding solution of the Benjamin-Ono equat
differs from Eq.~5.9!,

U~j,t!5
Ãv

11B̃~j2vt!2v2
. ~5.10!

So, the Benjamin-Ono soliton solution~5.10! contains the
familiar relation between the amplitude and the width of t
soliton:U0;1/D, whereU0;v is the amplitude of a soliton
and D;1/v is its width. As in the Benjamin-Ono equation
the solitary wave solution~5.9! has the widthD;1/v and
this width tends to infinity in the limitv→0. But in contrast
to the Benjamin-Ono equation the amplitude of this solita
pulse is fixed, which is quite unusual in soliton theory.

By inserting Eq.~5.8! into Eq. ~5.5!, one may verify that
the nonlinear term associated with summation processes
ishes and need not be compensated by a linear dispe
term. Another interesting feature of the choice of parame
a152a2 ,a350 is that there is no second-harmonic gene
tion in this case.

The solution~5.9! is unphysical for the following reasons
First of all, the longitudinal displacement associated with
has the following form:

ux~x,0,t !5
A

AB~V2CR!
arctan@AB~V2CR!~x2Vt!#

~5.11!

and the total deformation of the filmux(1`,0,t)2ux
(2`,0,t) would be nonzero. Usually in one-dimension
elastic nonlinear systems the total deformation connec
with a soliton is nonzero too@38#. However, in our effec-
tively two-dimensional system only spatial regions near
surface can be deformed and the strain decreases in the
of the bulk. A nonzero total deformation at the surfa
would also imply a nonzero deformationux(1`,z,t)
2ux(2`,z,t) independent of the depthz.

Due to the complicated two-dimensional strain distrib
tion in the substrate and due to the connection between
two components of the displacements in the sagittal pla
the z component of the displacement field at the surfa
would diverge at large distances from the center of the s
tary pulse. From Eqs.~B2! and ~A4! it follows that
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uzus; ln~11h2!. ~5.12!

Following Ono@39# we can find a periodical generaliza
tion of the solitary solution~5.9!. Using the formulas~A6! it
is easy to verify that this solution has the form

Ũ~h!5
12b2

12b cos~h/ l !
, ~5.13!

where the period of the wave isL52p l 52pb2/A12b2 and
b<1. The periodic solution~5.13! transforms into the soli-
tary pulse~5.9! in the limit b→1. This periodic solution as
well as the solitary one~5.9! would be accompanied by
nonzero average deformation of the surface.

C. Solitary waves in the absence of summation processes

The second combination of parametersa i , i 5 1,2,3,
which leads to simple analytic solutions, is the following:

a15a2 , a3522a1 . ~5.14!

We also puta151,b151. In this case Eq.~5.2! reduces to

ĤŨ1Ũh2
1

2

]

]h
@Ũ21~ĤŨ !2#50. ~5.15!

The same nonlinearity as appearing in Eq.~5.15! had been
considered by Hunter@8# in an evolution equation without a
linear dispersion term. Hence, the linear parts of Eq.~5.15!
and the corresponding evolution equation in Ref.@8# are
quite different.

Since the linear dispersion term and the nonlinear term
Eq. ~5.15! both appear as a first derivative with respect toh,
one would naively expect that no solitary wave solution c
exist since the linear dispersion is not strong enough to s
press higher harmonics generated by the nonlinearity. H
ever, inspection of the Fourier-space version of Eq.~5.15!,

~11k!Uk52kE
k

`

dqUqUq2k* ~5.16!

for k.0 reveals that for this special choice of nonlineari
summation processes are absent. Consequently, generat
higher harmonics does not take place and the existenc
solitary waves for this equation does not come as a surp

Equation~5.15! has the following solitary wave solution

Ũ~h!54F 2

~h211!2
2

1

~h211!
G , ~5.17!

which can be verified by substituting the Fourier transfo
of the solution~5.17!,

Uk52ukuexp~2uku!, ~5.18!

into the integral equation~5.16!. @Compare this Fourier
transform with Eq.~5.8! for the Benjamin-Ono-type solitary
pulse.#

The profile of the soliton solution~5.17! is shown in Fig.
5. In contrast to the Benjamin-Ono-type solution of the p
5-11
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ceding subsection, it satisfies the condition*2`
` Ũ(h)dh

50, that has to be imposed on the strain]ux /]x associated
with surface waves.

Using the relations~B2!, one is led to

ux;
1

V2Cr

h

11h2
, uz;

1

AV2Cr

1

11h2
. ~5.19!

So in contrast to a ‘‘usual’’ soliton the amplitude of the
Rayleigh solitary waves diverges in the limitV→Cr .

Using the Green’s function of the Laplace equation~see,
for example, Ref.@41#! and the relation~1.4! we can easily
connect the longitudinal and transverse distributions of
formation on the surface]u/]xus and in the bulk of the sub
strate]u/]xuv ,

]u

]x U
v

5
1

pE2`

` dx8~x2x8!

~x2x8!21z2k2
Ĥ

]u~x8!

]x8
U

s

, ~5.20!

where k5A12V2/C2, V.Cr , and C5Ct for transverse
andC5Cl for longitudinal deformations.

Substituting the solitary solution~5.17! into the formula
~5.20! and rescaling, we obtain the distribution of deform
tion in the substrate

Ũ~h,z!54F 2~z11!2

@~z11!21h2#2
2

1

~z11!21h2G
54

~z11!22h2

@~z11!21h2#2
, ~5.21!

where Ũ(h,z)}ux,x
l (x,z,t). We note that this two-

dimensional solution is very close to the lump soliton so
tion of the Kadomtsev-Petviashvili equation@40#,

Ũ;
z2112h2

~z2111h2!2
. ~5.22!

This fact confirms the two-dimensional nature of the Ra
leigh solitary waves. The solitary solution~5.21! can be re-

FIG. 5. Solitary wave solutions~5.17! ~solid line! and ~5.39!
with parameters~5.35! ~long dashed line! and ~5.36! ~short dashed
line!.
03661
-

-

-

-

written in polar coordinatesx5r sinf,z5211r cosf, by
which it assumes the simple representation

Ũ5
4 cos 2f

r 2
. ~5.23!

A graphical representation is given in Fig. 6.
By the analogy to the above results~5.9!,~5.13! the struc-

ture of the periodic generalization of the solitary soluti
~5.17! is almost evident. Such solution has the form

Ũ5
2g2

12g2 F g2

~12A12g2 cosgh!2
2

1

12A12g2 cosgh
G ,

~5.24!

where the parameterg (g<1) characterizes the period o
this nonlinear wave,g52p/L. In the limit g→0 the expres-
sion ~5.24! reduces to the solitary solution~5.17!.

In k space the periodic solution~5.24! has a simple form
similar to that of the solitary solution~5.17!. For periodic
solutions with the spatial periodL ~or with the fundamental
wave numberg52p/L) we introduce Fourier amplitude
Qn , n51,2, . . . via

Ũ~h!5g (
n51

`

Qn exp~ ingh!1c.c. ~5.25!

Then we have the following discrete system instead of in
gral equation~5.16!:

~11ng!Qn52g2n (
m51

`

QmQm1n , n.0. ~5.26!

It is easy to obtain the following solution of this equation

Qn5
2gn

12g2
expS 2nlnA11g

12g D , n.0. ~5.27!

FIG. 6. Two-dimensional representation of the surface acou
solitary wave~5.21!. h}x2Vt, x coordinate parallel,z coordinate
normal to the surface.
5-12
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Note that this solution has zero average consistent with
exclusion of the (n50)-component in Eq.~5.26!. In the limit
g→0, gn5k this solution transforms into the solitary solu
tion ~5.17!.

An interesting property of Eq.~5.15! is the existence of
additional solitary wave solutions which may even form
infinite set of solutions. Such solutions can be sought
using the following ansatz in Eq.~5.16!:

Uk5 (
n51

N

anukune2buku, ~5.28!

which is a generalization of Eq.~5.18!, where an , n
51, . . . ,N and b are constants to be determined. Inserti
this ansatz into Eq.~5.16! and putting all coefficients in fron
of the different powers ofk equal to zero, we get (N11)
algebraic equations foran , n51, . . . ,N andb, i.e., we have
as many equations as we have parameters to determ
These equations are

a152E
0

`

dq e22bqf 2~q!, ~5.29!

as1as115
2

s! E0

`

dq e22bqf ~q! f (s)~q!, s51, . . . ,N21,

~5.30!

aN5
2

N! E0

`

dq e22bqf ~q! f (N)~q!, ~5.31!

where f (q) is the polynomial,

f ~q!5 (
n51

N

anqn ~5.32!

and f (s)(q)5]sf (q)/]qs. For example, there are three equ
tions for a1 ,a2 ,b in the case ofN52,

a15a1a22I 31a2
22I 4 ,

15a12I 21a22I 3 ,

15a1I 11a2I 2 , ~5.33!

where

I n~b!52E
0

`

dq e22bqqn5
2n!

~2b!n11
. ~5.34!

In addition to the previous solution~5.18! with a152,a2
50,b51 the system of equations~5.33! has two additional
solutions

a15
3

2
~31A3!, a25

3

2
~312A3!, b5

1

2
~31A3!

~5.35!

and
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a15
3

2
~32A3!, a25

3

2
~322A3!, b5

1

2
~32A3!.

~5.36!

For the calculation of solitary solutions in coordina
space we can use the formula

E
0

`

dk coskhkne2buku5S 2Ĥ
d

dh D n b

b21h2
, ~5.37!

and represent the solution of orderN in the form

Ũ (N)~h!52(
n51

N

anS 2Ĥ
d

dh D n b

b21h2
. ~5.38!

It is evident from this expression that*2`
` Ũ(h)dh50. In

the particular case of the above solutions~5.35! and ~5.36!
we obtain

Ũ (2)~h!52a1S 2b2

~h21b2!2
2

1

~h21b2!
D

12a2S 8b3

~h21b2!3
2

6b

~h21b2!2D . ~5.39!

The profiles of these solitary solutions are shown in Fig.
We see that the field distributions in the solution~5.17! and
the solution with parameters~5.35! are very similar. But the
displacement profiles in the substrate are quite different.
easy to show that after using formula~5.20! with the result
~5.38! we can rewrite the two-dimensional solutions for t
Rayleigh solitary waves as

Ũ~h,z!5F2a1

]

]h
1a3

]3

]h3
2a5

]5

]h5
1•••G

3
1

pE2`

`

dh8F~h82h,z!
b

b21~h8!2

1F2a2

]2

]h2
1a4

]4

]h4
2a6

]6

]h6
2•••G

3
1

pE2`

`

dh8F~h82h,z!
h8

b21~h8!2
, ~5.40!

whereF(h82h,z) is the kernel of the integral in Eq.~5.20!,

F~h82h,z!5
1

~h82h!2 iz
1

1

~h82h!1 iz
. ~5.41!

It is convenient to introduce polar coordinates with orig
having distanceb from the surface of the half space outsid
the substrate,

z52b1r cosf, h5r sinf. ~5.42!
5-13
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In these coordinates the expressions for the solitary wave
the general case are much simpler,

Ũ (N)~h,z!52(
n51

N

an

cos~n11!f

r n11
. ~5.43!

Consequently, in two-dimensional space the higher-or
solitary solutions have different symmetry.

For N53 there exist two additional solutions. Th
first having parameters b.4.07, a1.15.48, a2
.47.49, a3.131.19 has the profile similar to the expre
sion ~5.39! with the parameters~5.35!, i.e., has only one
zero; the second solution withb.0.15, a1.20.05, a2
.0.04, a3.20.006 has the symmetry of the previous s
lution ~5.39! with parameters~5.36!.

CONCLUSIONS

The main goal of this paper has been an investigation
existence and properties of solitary surface acoustic wa
propagating in a homogeneous elastic half space with lin
dispersion and nonlinearity introduced via the surface.
this purpose, we have derived effective boundary conditi
at the surface of the elastic half space that represen
strongly nonlinear thin film. An advantage of surface aco
tic waves over other wave systems is the possibility of ea
manipulating their propagation properties via the surface.
pecially linear dispersion can be tailored by coating the s
face or by letting other materials diffuse into or react w
the substrate material. For the latter reason, we have
considered half spaces with continuously varying mate
properties and strong nonlinearity near the surface. For th
systems, evolution equations for nonlinear Rayleigh wa
have been derived that contain nonlocal linear dispersion
nonlocal second-order nonlinearity.

Subsequently, the effective boundary conditions rep
senting a nonlinear film have been generalized. For this g
eralized system, an evolution equation has been derived
contains three nonlocal nonlinear terms. The physically m
relevant case of a nonlinear film covering a linear subst
forms a special case. For this case, numerical analysis
vealed that solitary wave solutions are likely to exist only
the presence of higher-order linear dispersion. Periodic p
train solutions have been computed that have been fo
unstable, exhibiting oscillatory instabilities.

Analytic solitary wave solutions have been found for tw
other special cases. In one of these, a whole family of tr
eling solitary wave solutions has been identified, its memb
having different shapes. These solitary pulses exhibit an
gebraic decay both into the substrate and along the surf

For the evolution equations with nonlocal nonlinearity
studied in this paper, analysis in Fourier space often pro
to be preferable to real space. On the one hand, solutions
be found more easily in this way. On the other hand, deco
position of the nonlinearity in Fourier space into summat
and difference processes and inspection of these two p
yields a better understanding of the counterplay of lin
dispersion and nonlinearity in nonlocal evolution equatio
03661
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APPENDIX A

We use the following definition of the Hilbert transform
Ref. @42#:

Ĥ f ~x!5
1

pE2`

` dx8

x82x
f ~x8!. ~A1!

In addition to the well-known skew-symmetric relationshi

ĤĤ f ~x!52 f ~x!, ~A2!

the Hilbert transform satisfies the convolution theorem R
@43#,

Ĥ~ f w!5 f Ĥw1wĤ f 1Ĥ@~Ĥ f !~Ĥw!#. ~A3!

For the study of solitary waves the following formulas a
useful @42#:

Ĥ~1/R!52x/aR, Ĥ~1/Rn!5
1

2~n21!a

]

]a
Ĥ

1

Rn21
,

~A4!

Ĥ~x/R!5a/R, Ĥ~x/Rn!52
1

2~n21!a

]

]a
Ĥ

x

Rn21
,

~A5!

whereR5a21x2 anda is a parameter.
For the investigation of periodic waves one may use@39#

Ĥ
1

12b cosax
52sgnaS b sinax

A12b2~12b cosax!
D ,

~A6!

Ĥ
sinax

12b cosax
52sgnaS A12b2

b~12b cosax!
2

1

bD . ~A7!

Finally, for the Fourier transformation of the equatio
and solutions in this paper we use

Ĥ sinkx5
k

uku
coskx, ~A8!

Ĥ exp~ ikx!5 i
k

uku
exp~ ikx!. ~A9!

APPENDIX B

The connection between the components of deforma
associated with a linear monochromatic wave at the pla
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surface of an elastic half space is

]ux
l

]x
5v,

]ux
t

]x
52A12V2/Ct

2Ĥw,

]ux
l

]z
5A12V2/Cl

2Ĥv,
]ux

t

]z
5~12V2/Ct

2!w,

]uz
l

]x
5A12V2/Cl

2Ĥv,
]uz

t

]x
5w,

]uz
l

]z
52~12V2/Cl

2!v,
]uz

t

]z
5A12V2/Ct

2Ĥw.

~B1!
.

ett

.

za

.

al

.

,

03661
It is then easy to find the expressions for the total deform
tions using the relations~B1! and ~1.6!,

]ux

]x
5

V2

2Ct
2 v,

]uz

]z
52S 122

Ct
2

Cl
2D V2

2Ct
2 v,

]uz

]x
52Ak l

k t

V2

2Ct
2
Ĥv,

]ux

]z
5S k l2k t1

V2

2Ct
2D Ĥv.

~B2!
ii,

h.

n

d

.

,

e

.
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